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Abstract—Previous work in both the optimization and biolog-
ical modeling fields have produced evolution inspired algorithms
and highly accurate species specific models of animal behavior,
respectively. An intuitive extension to these concepts is the appli-
cation of those aforementioned algorithms upon the behavioral
model frameworks. By clearly articulating our thought process
throughout this endeavor we attempt to illuminate foundational
concepts in both fields, while also creating a blueprint for the
application of optimization on biologically inspired agent based
models.

I. INTRODUCTION

WHEN ATTEMPTING to understand the impetus and
intricacies of biological behaviors, agent based models

are a key method of both validation and exploration. Agent
based models are comprised of many "agents," which are
provided rules that they must follow given the information
that they know. Importantly, there is no being with state-
omniscience that is feeding the agents additional information;
each individual makes its own decisions based on its rule-
set and the information it has, a concept that is paralleled
in biological systems. One rather interesting example of such
a model is HoPE (Homing Pigeons Escape), first presented
by Papadopoulou et al. in the paper "Self-organization of
collective escape in pigeon flocks" [1]. HoPE aims to ac-
curately simulate the behavior of a flock of homing pigeons
(Columba livia) under attack by a falcon-like predator. In the
model, the pigeon-oids movements are governed by a set of
pseudo-forces, each one characterizing a different reason that
a pigeon would alter its movement. The relative weights of
these pseudo-forces have been chosen such that the pigeon-
oid behavior in the model accurately resembles empirical data
of pigeons fleeing a robotic falcon.

As computational modeling brings insight to the field of
biology, nature provides inspiration to the field of computer
science. Although there are many examples, such as AntNet
[2] and Amorphous Computing [3], we will focus on so called
"evolutionary" or "genetic" optimization algorithms. These
methods of optimization conceptually mimic natural selection
by generating a "population" of candidate solutions, and then
allowing the more fit individuals to have a greater impact on
the next generation.

In this paper, we explore the evolutionary dynamics of
collective escape through optimization methods analogous
to survival of the fittest, using the well documented and
validated successor to the HoPE model, A New HoPE [4], as

a foundation. Primarily we will use Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [5] for this process.

II. BACKGROUND

Prior to the use and application of virtually any process or
product, it is often beneficial to understand how they function.
In this section we survey the concepts of the model and
algorithm that we will work with in this paper in order to
build a foundation on which we can understand the meanings
of our results.

A. HoPE and A New HoPE

The HoPE model [1] draws inspiration from the well known
Boids model, which was initially published by Reynolds in his
1987 paper "Flocks, Herds, and Schools: A Distributed Behav-
ioral Model" [6]. Boids-style models subject each agent to a
set of behavioral pseudo-forces which dictate the movement of
the Boid via Newton’s second law. In Reynolds’ model, there
are three crucial types of pseudo-forces: collision avoidance,
velocity matching, and flock centering.

Although the Boids model mimics flocking in general,
variants tailored to individual species or scenarios can be
constructed in order to create highly accurate simulations.
One key modification that allows HoPE to more accurately
model the collective escape of pigeons under attack is the
set of pseudo-forces acting on each pigeon-oid. The collision
avoidance1 and flock centering2 forces remain, but the velocity
matching force is exchanged for an acceleration attraction
force: instead of attempting to match its neighbor’s speeds, the
pigeon-oid speeds up when other pigeon-oids are in front of
it. Alignment, predator avoidance, flight control3, and wiggle4

pseudo-forces are added. The relative weightings of these
forces were then carefully chosen to reflect empirical data of
homing pigeons in the same environment. A visualization of
the forces can be seen in Fig. (1), while the precise nature of
each is thoroughly described by Papadopoulou et al. [1].

Each run of the HoPE simulation can contain any number
of discrete attack instances, in which the predator shadows
the pigeon-oids, chases them, and then retreats (resets). When

1The collision avoidance force can also be thought of as a separation force.
2The flock centering force can also be thought of as a force encouraging

turning cohesion.
3The flight control force can be thought of as an opposing force that is

proportional to how worn out the pigeon-oid is.
4The wiggle pseudo-force accounts for random error.
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Figure 1: Recreation of Figure 1 from "Self-organization of
collective escape in pigeon flocks" [1] with slight modifica-
tions. The predator is outlined in red. All pseudo-forces shown
are acting on pigeon-oid 𝑖. The pseudo-forces are predator
avoidance (𝝍𝒑), separation (𝝍𝒔), alignment (𝝍𝒂), acceleration
cohesion (𝝍𝒄𝒂), turning cohesion (𝝍𝒄𝒕 ), wiggle (𝝍𝒘), and flight
control (𝝍 𝒇 ).

initialized, the initial and boundary conditions are randomized.
Here, the initial conditions are simply the starting positions of
each agent, while the boundary conditions include the mass
and preferred speed of each pigeon-oid. A single run of the
simulation, then, will not be sufficient for collecting data,
regardless of the number of attack instances that occur during
it.

This framework is further expanded on by Papadopoulou et
al. in "Emergence of splits and collective turns in pigeon flocks
under predation" [4]. The resulting model, named A New
HoPE, incorporates a "discrete, variable, and uncoordinated"
maneuver as well as robust split-flock handling.

B. NSGA-II

NSGA-II is a multiobjective genetic algorithm. We begin by
addressing the multiobjective aspect of the method. The most
important aspect of multiobjective optimization to understand
is that there is no one best option. To understand this, we will
use a small example problem regarding package delivery.

Let’s say we order a package, and we want it to arrive at
its destination as quickly as possible, while also minimizing
the cost of delivery; these are our objectives. In this scenario,
there are five delivery options: 1⃝ 1-day shipping for $25,

2⃝ 2-5 day shipping for $5 dollars, 3⃝ 4-5 day shipping
for $5 dollars, 4⃝ 10-14 day shipping for $1, and 5⃝ 10-
14 day shipping for free. Although we can easily discern that
options 3⃝ and 4⃝ are not optimal, it is easy to imagine
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Figure 2: Visualization of a Pareto frontier for random data.
The dotted green curve shows the actual bounds for the random
data, illustrating that the Pareto frontier is not necessarily
optimal out of all candidates. The points A and B are used
to aid in the understanding of the mathematical definition of
a Pareto optimal candidate.

situations in which the other three could be the best choice.
1⃝ , 2⃝ , and 5⃝ belong to the Pareto frontier - this is the set

that we are attempting to find when conducting multiobjective
optimization. A graphical representation of the Pareto frontier
can be seen in Fig. (2).

With multiobjective optimization under our belt, we
progress onward to genetic algorithms. At the core of these
methods is the population: a set of 𝑁 candidate solutions.
Once these solutions are evaluated using the objective func-
tions, the next generation is created through some kind of
update. NSGA-II has two kinds of updates: combinations and
mutations. For combination updates, two parent candidates are
merged in a complementary manner to create two offspring
candidates. In mutation updates, one parameter in a single par-
ent candidate is randomized to create single mutated offspring.
The key to improvement over time is that candidates within
a current population are much more likely to be chosen as a
parent if they are on or near the Pareto frontier; this is called
tournament selection, and is inspired by so called tournament
displays in certain animals.

What sets NSGA-II apart from other genetic algorithms is
its inclusion of a crowding distance term during tournament
selection. Crowding distance is a method of measuring how
tightly packed the Pareto front of the current population is. In
addition to our objective functions, NSGA-II wants to maxi-
mize the crowding distance and takes these values into account
when defining the successive generation. This encourages a
diverse set of solutions, which is generally preferred when
using a genetic algorithm to explore an objective space.
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Value

Weight Name Abbr. Calibrated Minimum Maximum

Alignment 𝑎 7.5 2.5 12.5

Flock centering 𝑐𝑡 2.5 0.5 5

Acceleration attraction 𝑐𝑎 5 1 10

Separation 𝑠 5 1 10

Wiggle 𝑤 0.2 0.15 0.5

Predator avoidance 𝑝 2 0.75 3.5

TABLE I: HoPE parameters that were used as decision vari-
ables in our implementation of NSGA-II. Adjacent to each
name are three columns, the first providing the calibrated
default values for A New HoPE, and the latter two listing
the minimum and maximum values allowed for that parameter
during our optimization.

When working with genetic algorithms, it is important to
verify that there is a sufficiently good reason to be using them,
as they take a very long time compared to other optimization
methods due to their reliance on populations of candidate
solutions. Problems that are characterized by a highly complex
and rugged objective space provide reasonable rationale for
using these techniques.

III. METHODS

When implementing any optimization algorithm we must
first know the decision variables (the parameters that we can
change within the system), and the objective functions (the
aspects of a solution that we want to optimize). For this paper,
we have chosen to vary the relative weightings of most of the
pseudo-forces acting on each pigeon-oid, seen in Table I. In
an attempt to keep our candidate solutions within the bounds
of reality, we have chosen to keep the flight control force
constant, recognizing that if we were to reduce this force, our
candidate solutions could easily exceed reasonable speed and
energy constraints.

The issue of high speed pigeon-oids may not yet seem
resolved, and rightly so. If we were to set our alignment
and acceleration attraction weightings to maximum values, we
could get pigeon-oids whose average speed is significantly
higher than the pigeons in our world. When attempting to
address the question how can a flock most effectively avoid
predation, the answer be much faster than the predator is
trivial and uninteresting. Consequently, the first of our objec-
tive functions will be the mean speed of the pigeon-oids over
the course of the simulation. Being that velocity has a strong
correlation to energy used, our speed minimization is akin
to energy minimization as well, which is a well established
evolutionary goal.

The second objective function is of course pigeon-oid cap-
ture rate5, but this concept needs to be defined explicitly before
we can use it during our optimization. We define that a pigeon-
oid has been caught by our predator if the center of the pigeon-

5Pigeon-oid capture rate is synonymous with predator success rate.

oid comes within 1 meter of the predator6. Furthermore, we
will treat each attack instance as having a Boolean success
rate - implying a 1 if the predator caught a pigeon-oid and
0 if the predator did not. Whether or not a pigeon-oid is
caught, however, is not a good function to optimize because
of its binary nature, in addition to the fact that our system is
highly stochastic7. To address both of these issues, we will run
multiple iterations of A New HoPE, each containing multiple
attack instances, and then divide the number of pigeon-oids
caught by the number of attacks to calculate the likelihood
that a pigeon-oid is caught per attack.

With our objectives selected, we can write the evaluation
function that will determine the two costs of a candidate
solution. The pseudo-code for this function can be seen in
Algorithm 1.

Algorithm 1 Objective Evaluation Function

Require: X = {𝑤𝑎, 𝑤𝑐𝑡 , 𝑤𝑐𝑎, 𝑤𝑠 , 𝑤𝑤 , 𝑤𝑝}
N ← number of A New HoPE runs
A ← number of attacks per run
𝑖 ← 0
while 𝑖 < 𝑁 do

procedure ANEWHOPE(X, A)

J 𝑖,1 ←
number of pigeons caught

A
J 𝑖,2 ← average pigeon speed

end procedure
𝑖 ← 𝑖 + 1

end while
J tot,1 ← mean(J0:N−1,1)
J tot,2 ← mean(J0:N−1,2)
return J tot

Our genetic optimization approach is then implemented in
MATLAB. To specify our decision parameters, we generate a
JSON configuration file almost identical to the one provided
in the source code for A New HoPE. In addition to the
modifications that we want to make to our six decision
variables, calls to save data unnecessary for our optimization
were also removed. The executable was then called directly
from MATLAB, and the relevant data were saved.

IV. RESULTS AND ANALYSIS

In our specific optimization run, we used a population size
of 25 over 30 generations, and our evaluation was comprised
of N = 75 A New HoPE runs model which were each
comprised of A = 10 attacks. On average, the evaluation of
a single candidate solution took just under three minutes for
a total optimization run time of approximately 37 hours. All
generations of the optimization run can be observed in Fig. (3).
After creating this plot, we can immediately see that some
of our candidate solutions do result in high speed pigeon-
oids, but most fall within reasonable speed bounds, including

6The distance of 1 meter was chosen to resemble the wingspan of a
Peregrine falcon (Falco peregrinus) [7].

7A stochastic system is one that is randomly determined.
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Figure 3: Graphical representation of our objective space,
where the 𝑥-axis is the likelihood that a pigeon-oid will be
captured during any given attack instance in percent and the
𝑦-axis is average pigeon-oid speed in meters per second. The
yellow diamond corresponds to the default parameters (Table
I), while the candidate solutions on the Pareto frontier are
outlined in various bright colors. These colors also denote
groups of similar parameter values among Pareto optimal so-
lutions, which we will call solution regimes. The approximate
parameter values for each regime can be found in Table II.
The numbering for these groups begins at 1 on the left side
of the figure. In addition to this interesting development, we
also appreciate that our candidates do seem to improve as
generations are accrued, which is to be expected.

our empirically calibrated default. It is encouraging to see
the calibrated values performing similarly, but slightly worse,
than the other candidate individuals as this implies that we
have not captured all of the selective pressures present for
a real pigeon - which we most definitely have not done.
Nonetheless, the near optimal performance exhibited by our
calibrated candidate is evidence towards the claim that A New
HoPE accurately captures collective escape in homing pigeons.

To quantify the uncertainty related to our choice of N and
A, a separate series of 200 evaluation function calls was made.
Throughout all of these runs, our decision variables were
fixed at their default values. Uncertainty analysis was then
conducted on the results without any assumptions regarding
their distribution. Based on this investigation, we are able to
report the 95% confidence intervals of 1.7% for pigeon capture
rate and 0.068 m/s for average flock speed.

Even without the different regimes highlighted in Fig. (3),
it is not too difficult to notice the effective discontinuities
along the Pareto frontier. It makes sense to think of these
different regimes as unique strategies that our pigeon-oids have
developed under the constraints that we have set for them. A
visualization of a single attack instance for each of the regimes

Regime Number

Name 1 2 3 4 5 6

Capture Rate (%) 0.0 1.0 2.2 3.7 5.4 8.5

Flock Speed (m/s) 21.0 20.8 20.3 19.9 18.4 17.3

Alignment 10.1 9.5 8.7 8.2 3.3 2.5

Flock centering 2.6 3.7 2.6 2.6 2.3 1.2

Acceleration attraction 8.6 5.1 4.4 1.1 3.5 2.0

Separation 2.1 1.7 7.8 4.0 8.5 2.0

Wiggle× 10 3.0 2.2 3.6 2.0 3.0 4.2

Predator avoidance 3.2 3.2 2.2 3.0 3.3 2.2

TABLE II: Approximate parameter values for the six unique
candidate regimes on the Pareto frontier, which can be viewed
in Fig. (3).

is provided in Fig. (4)8.

V. CONCLUSION

In this paper, we have reviewed flocking agent based models
as well as multiobjective optimization and genetic algorithms
in order to build comprehension of our results. We then
discussed the methods that were implemented to arrive at our
results, which in turn was followed by a brief discussion of
our results. This discussion included uncertainty analysis and
a study of the different Pareto optimal solution regimes that
our implementation found.

There are many interesting directions to take this research.
First, it would be interesting to provide this data to individuals
more well versed in collective movement and flocking and
see what they interpret from the data. My thought is that
perhaps non-pigeon species have collective escape patterns that
more closely match some of the other regimes that we found.
Another interesting direction would be to give the predator
agent some more agency, by allowing some of its parameters
to vary. This particular extension introduces elements of game
theory into our problem. Finally, exploring the role of flock
size could be very fascinating, potentially resulting in unique
Pareto optimal regimes for different flock sizes9.
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Figure 4: Distance to predator versus time for all pigeon-oids during a single attack instance (left) and flight paths of all
pigeon-oids during that same time span (right). In the flight path plots, the starting location of each pigeon-oid is a black
circle. The remainder of the pigeon-oid’s path is then shaded to correspond with its personal distance to the predator. The
colorbar for these plots is not uniform, as the range of pigeon-oid distance to predator varies drastically. These plots also
contain a looping boundary condition to provide the agents an effectively infinite space in which to maneuver. Although no
attack instance plays out identically to another, the attack instances shown are characteristic of their specified regime.
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