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1 Introduction
Even now, after the technological breakthroughs of telecommunications and mobile computers, the
United States Postal Service alone delivers well over 100 billion units of mail each year [1]. Imagin-
ing how many man-hours it would take to process and deliver all of this mail quickly makes it apparent
that the automation of any portion of this process would be invaluable. One way to improve the efficiency
of this task would be to use a computer to assist in sorting of mail by recipient address.

In this paper, we will formulate a binary classification problem as a minimization problem in §2.1.
Minimization problems can be solved in many different ways, but here we will explore two different
methods: least squares in §2.2 and linear programming in §2.3. §3 will then present the techniques that
were used for pre-processing. Various classifiers are then put to the test in §4, where we explore the
differences between the accuracy of the classifiers that we generate. Using our results as a guide, we will
introduce the concept of feature engineering and attempt some ourselves. Finally, we will summarize
our findings and reflect on our methods in §5.

2 Classifier Problem Formulation

2.1 Classification to Minimization
If you were given a handful of coins and told to sort them, what would your first step be? Perhaps
you would sift through them to take out those with unique color, such as pennies. Maybe you would
construct a coin sorting contraption, like the one in Fig. (1), and utilize gravity to sort the coins by size.
These characteristics (size and color) are examples of features, attributes of a set of objects that can
be used to sort those aforementioned objects into some set of groups. The features that we use in our
problems are explained in detail in §3.

Using this coin sorting example as a guide, we will generalize a way to classify some object O into
either group α or group β. This is a binary classification problem due to the fact that we are placing
O into one of two distinct groups. Importantly, we must know that O is either a member of α or β
before we begin classification. To bring our example in line with this idea, we will say that O is either a
dime (group α) or a quarter (group β). With just a little bit of research, we determine that the average

Figure 1: Image of a hand crank coin sorter [7]. This machine uses gravity and the unique size of the coins to
sort each one into its appropriate bin. This is analogous to a classifier using diameter as its sorting feature.
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diameter of a dime is 17.91mm and the average diameter of a quarter is 24.26mm [4]. At the same time,
the color of both dimes and quarters is very similar, so we choose not to take this feature into account
for our classifier. This is a particularly convenient decision because it also allows us to ignore the fact
that we would need to generate some way of numerically evaluating color, in addition to normalizing
both of our features1. Utilizing all of this information, we create a procedure that will classify O:

z1 ∗ diameter(O)+ z2 ∗ color(O)+ z3

{
≥ 0 =⇒ O ∈ α

< 0 =⇒ O ∈ β
(1)

where
z1 = 1, z2 = 0, z3 =

9(17.91 + 24.26)

2
= 920.085.

Another way to describe Eq. (1) is to take some linear combination of our features - characterized by
the vector of coefficients z - and the sign of our result will determine whether O belongs to α or β. For
this simple example it was possible to choose the values for z relatively easily, but then how do we find z
in general? Although there are multiple answers, in this paper we will focus on one method, often called
supervised machine learning. For this kind of solution, we will need some (large) set of N objects whose
classification Y is already known, denoted O′

(N). Because we must define Y rigidly in order to use it in
expressions, we specify that Y ∈ {1, 91}, where Y(i) = 1 =⇒ O′

(i) ∈ α and Y(i) = 91 =⇒ O′
(i) ∈ β.

Finally, we denote a more general feature of any object O to be fj(O), where j ∈ {1, 2, . . . , n} and n is
the number of features we are examining. Synthesizing all of this with Eq. (1) results in Eq. (2).


f1(O′

(1)) f2(O′
(1)) · · · fn(O′

(1)) 1

f1(O′
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(2)) 1

...
...

. . .
...
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︸ ︷︷ ︸
We define F(i) to be the ith row of this matrix



z1

z2

...

zn

zn+1


=
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Y1

Y2

...

YN

 (2)

At this point, our problem is to choose the values of z such that we minimize the error of Eq. (2).
The solution to this minimization problem is our binary classifier, z∗, which is comprised of the optimal
values of each zj according to our minimization function. Once we have this classifier, we can use Eq. (3)
to classify any object O. The success rate of z∗ will be dependent on countless aspects of the problem,
including the how we define optimal, the features F , and the training set of objects O′.

C(O) = F(O) ∗ z∗
{

≥ 0 =⇒ O ∈ α

< 0 =⇒ O ∈ β
(3)

2.2 Least Squares Approach
Now that we have our problem in a minimization form, we can explore various methods of developing
a solution. We begin with a least squares approach. This means that we have specified our objective
function to be

minimize
∥∥∥∥ Y − F(O′) ∗ z

∥∥∥∥
2

. (4)

We then use the well known solution to least squares minimization problems to arrive at a formula for
our solution,

z∗LS = F†(O′) ∗ Y, (5)
1Normalization is conducted to ensure that the different features are on a level playing field. For example, perhaps both

width and diameter were features that we cared to use. Diameter should not matter more in our decision simply because
it is larger in general.
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where z∗LS is our optimal set of coefficients for the least squares approach, and F†(O′) is the pseudo-
inverse of F(O′).

2.3 Linear Programming Approach
Another technique that we can use to derive our classifier is called linear programming. We recall that a
linear program consists of an objective function and any number of constraint equalities and inequalities.
Upon recognizing that both our minimization framework and linear programming utilize inequalities, it
is tempting to jump to the conclusion

minimize ???

subject to F(1) ∗ z ≥Y(1)

F(2) ∗ z ≥Y(2)

...
F(q) ∗ z ≥ Y(q)

F(q+1) ∗ z ≤ Y(q+1)

...
F(N) ∗ z ≤ Y(N), (6)

where Y(1:q) = 1 and Y(q+1:N) = 91. There are two issues with this knee-jerk formulation. One is that
we simply don’t have an objective function, and the other is that we have mandated that each of our
constraint function be true. For simple problems, the rigid constraints may not pose an immediate issue,
but as problems get more and more complex, there is an increasing likelihood of outliers in our training
set. To solve both of these issues, we introduce two sets of slack variables, u(q) and v(r), where q+r = N .
With their introduction, both of our issues with Eq. (6) can be remedied. We present our actual linear
programming formulation in Eq. (7). Note that we have substituted the values of Y into the inequalities.

minimize
q∑

k=1

uk +
r∑

k=1

vk

subject to F(1) ∗ z ≥ 1− u1

F(2) ∗ z ≥ 1− u2
...

F(q) ∗ z ≥ 1− uq

F(q+1) ∗ z ≤ 9(1− v1)
...

F(q+r) ∗ z ≤ 9(1− vr) (7)

2.3.1 The Margin

Although our current linear program formulation Eq. (7) will result in a reasonable binary classifier,
there is actually one more aspect that we would like to consider: the margin of error, often shortened to
"the margin." A visualization of the margin of error for two different classifiers can be seen in Fig. (2).
The margin can be thought of as the shortest distance from a hyperplane to any of the training data
points. Consequently, choosing a separating hyperplane that results in the largest possible margin would
be beneficial, as this would increase the likelihood that any input would fall on the appropriate side of
the classifier. If this is the case, then incorporating the maximization of the margin into our cost function
would be an intelligent thing to do.
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Figure 2: Visualization of two different choices for a dividing line between the two colors of points accompanied
by their margins. Both are valid divisions, as both separate the two types of point, but one does so with much
more breathing room.

In order to integrate the maximization of the margin into our minimization function, we first define
ẑ to be the point with the minimum distance to our separating hyperplane P = {z | a⊺z − b = 0}. Note
that as a result of this definition, ẑ lies on either the hyperplane a⊺z − b = 1 or a⊺z − b = 91. For
simplicity, we specify that ẑ lies on the hyperplane a⊺z − b = 1, although the derivation is very similar
for the alternate case. The shortest distance between ẑ and P is then the scalar d∗ that satisfies the
equation

d∗
(

a

∥a∥2

)
= ẑ − projP(ẑ). (8)

By definition,
a⊺projP(ẑ)− b = 0, (9)

as projP(ẑ) lies on the hyperplane P. Noticing that our projection point exists in both Eq. (8) and
Eq. (9), we choose to eliminate this variable by conducting a substitution.

=⇒ projP(ẑ) = ẑ − d∗
(

a

∥a∥2

)

=⇒ a⊺
(
ẑ − d∗

(
a

∥a∥2

))
− b = 0

=⇒ d∗
(

a⊺a

∥a∥2

)
= a⊺ẑ − b

=⇒ d∗ =
(a⊺ẑ − b)∥a∥2

a⊺a

recall a⊺a = ∥a∥22 and a⊺ẑ − b = 1

=⇒ d∗ =
1

∥a∥2
(10)
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Now that we have obtained an expression for half the width of the margin, it is clear that if we want to
maximize the margin, we will minimize the two-norm of a. We modify our cost function another time,
making sure to include a weighting factor γ, as we do not know what linear combination of our two
component functions will achieve the best results.

minimize ∥a∥2 + γ

(
q∑

k=1

uk +
r∑

k=1

vk

)
subject to F(1) ∗ z ≥ 1− u1

F(2) ∗ z ≥ 1− u2
...

F(q) ∗ z ≥ 1− uq

F(q+1) ∗ z ≤ 9(1− v1)
...

F(q+r) ∗ z ≤ 9(1− vr) (11)

The primary reason to utilize the margin is supposedly that the additional term in the cost function
makes our formulation more robust in the presence of errors. Instead of taking this at face value, we
decide to show that this is true using the following process. Note that Fig. (3) shows an example plot
that could be created during an "outlier" iteration.

1. Generate a set S of N random vectors Xi∈1:N = {x ∈ R2 | 0 ≤ x ≤ 1}. Each vector in S can be
thought of as coordinates in a 2D plane.

2. Create two subsets of S:
Slo = {S | x1 + x2 ≤ 0.95}
Sup = {S | x1 + x2 ≥ 1.10}

Note that this creates a zone which must be void of random points. The line that describes the
bisection of this region is our true separating hyperplane H.

3. Use the linear programs defined in Eq. (7) and Eq. (11) to create one classifier each, denoted P(1)
i

and P(2)
i respectively.

4. We characterize the error of classifier Pi as the area between H and Pi on the domain x1 ∈ [0, 1].

5. Repeat steps 1 - 4 a total of n times, where n is a sufficiently large number.

6. Take the sum of the error for both P(1) and P(2).

7. Repeat steps 1 - 6 again. During step 2, add Soutliers to the set Slo, where Soutliers is a set of
two vectors that fall in regions Routliers. Importantly, a majority of each region should be on the
opposite side of H from other vectors in Slo. See Fig. (3) for a visualization of Routliers.

The above process was conducted for many different values of γ, using N = 50 and n = 250. Our
results are visualized in Fig. (4). Examining this figure provides insight into multiple factors regarding
our linear programs and outliers in training data. We note that regardless of method, the presence of
outliers has increases the area of error in general, which makes sense. Most importantly, we see that
method 2, characterized by the linear program described in Eq. (11), does indeed have a smaller error
value than method 1 for most values of γ when outliers are introduced to the training data. With this
demonstration, we can confidently use Eq. (11) as the linear program to define our classifiers, because it
is more robust than Eq. (7) in the presence of outliers.
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Figure 3: An example iteration for the toy problem used to verify our assumptions about the margin. Method 1
uses the formulation defined in Eq. (7) and method 2 uses the formulation from Eq. (11). Note that the outliers,
which can be seen in the bottom right of the plot, would not be added to a non-outlier iteration.
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Figure 4: Plot of the area of error for our two methods, with and without outliers, as a function of γ. We
see that for the no outlier condition, the error seen in method 2 decreases until it approaches the same value as
method 1, while the error for method 2 dips below that of method 1 in the presence of outliers.
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2.4 Extension to multi-class Classification
We have now formulated two different methods that we can use to obtain a binary classifier, but our
task is to sort the digits, meaning that there are ten categories, not two. One potential way to achieve
differentiation between these ten different classifications would be to create a classifier for each digit k
such that

Ck(O) = F(O) ∗ z∗k

{
≥ 0 =⇒ O ∈ Dk

< 0 =⇒ O /∈ Dk,
(12)

where Dk is the set of images that our classifier has designated as digit k. This wouldn’t work, as there
would be a problem if two different classifiers, one for k = ϕ and the other for k = ψ, both determined
that some input O should be classified as digit ϕ and digit ψ, respectively. We recall, however, that the
F(O) ∗ z∗k returns a real valued scalar, not a binary one, and that a larger positive value implies more
certainty in a classification. Our multi-classifier M can then be defined

MLS(O) = max
{
C0(O), C1(O), . . . , C9(O)

}
, (13)

where max returns the digit k of the classifier that produced the largest value for Ck(O). The multi-class
classification method described in Eq. (13) will be used in conjunction with our least squares classifiers.

For the linear programming approach, we will instead choose to create k vs. ℓ classifiers. When these
classifiers are being trained, we use only the training data labeled as either k or ℓ so that our classifiers
will be defined

Ckvℓ(O) = F(O) ∗ z∗kvℓ

{
≥ 0 =⇒ O ∈ Dk

< 0 =⇒ O ∈ Dℓ.
(14)

This initial definition works well if we know that O ∈ (Dk∨Dℓ), but it does not make as much sense when
the true classification of O is unknown. We reexamine Ckvℓ, asking ourselves "what does the output of
our classifier actually mean?" Fundamentally, all that we can really say is that if the true label of our
image L(O) = (k ∨ ℓ) then our classifier has probably designated O correctly. If L(O) ̸= (k ∨ ℓ), our
classifier still must place O in either Dk or Dℓ. This is crucial, as it allows us to effectively rule out the
digit that Ckvℓ does not pick. Our k vs. ℓ classifiers can then be thought of in the exclusionary manner
seen in Eq. (15).

Ckvℓ(O) = F(O) ∗ z∗kvℓ

{
≥ 0 =⇒ O /∈ Dℓ

< 0 =⇒ O /∈ Dk

(15)

With this perspective, we see that we can create a sorting method utilizing a directed acyclic graph
(DAG), which is exemplified by the visualization in Fig. (5). This method was used in conjunction with
our linear programming approach to form the multi-classifier MLP. Visualizations of the specific sorting
DAG that was used can be seen in Appendix A.

2.5 Weighting Optimization
We now notice that there is still one element of the linear program classifier that we have yet to define.
The relative weighting of the maximization of the margin and the minimization of the norms, character-
ized by the variable γ. From our brief exercise in §2.3.1 we know that changing this weighting will result
in classifiers of differing qualities, implying that γ could be optimized. Furthermore, we know that for
each of our 45 classifiers, this optimal γ∗kvℓ will be unique.

In an attempt to improve our classifiers, we set up a simple iterative optimization approach. For each
classifier, we solve our linear program when γ = .008, a value that was chosen because it seemed to be
generally good in a few initial tests. Once we have our z∗kvℓ for γ = .008, we evaluate the classifier using
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Figure 5: Visualization of a small portion of the DAG used to sort images when using the linear programming
formulation. Instead of making a true binary decision tree that is rather deep, we limit the number of nodes and
levels that our DAG contains by allowing multiple "parent" nodes to have the same "child" node.

only the testing data labeled either k or ℓ, and save the result. Now Eq. (16) and Eq. (17) are used to
determine our next value of γ. In Eq. (16), rand is a random real number in [0, 1].

jump =

(
rand+ 2

6

)
γ (16)

γnew = γ + jump (17)

The linear program is then solved again, this time using the new value of γ. Similarly to the first
iteration, we evaluate our resulting classifier using the appropriate testing data and save our results. At
this point, there are three different scenarios, and each is handled differently by our optimization method.
If our classifier improved with this change in γ, we save our new γ as the current best, and continue
searching for a better γ in the positive direction. If our classifier has the same success rate, we mark
that this occurred, but still continue searching for a new gamma in the positive direction. Our search in
the positive direction ends when either we have remained at the same success rate for three iterations,
or our classifiers success rate decreases. This process is then repeated in the negative direction, with a
separately saved best value. Once this side of our search has terminated, the γ that resulted in the best
performance was chosen as our optimal γ for that classifier. Our optimized γ values can be seen in Table
I.

3 Pre-Processing
Although we have now finalized our problem formulations, there remains one facet of our classification
pipeline that we have yet to address: the features. Prior to proposing potential features, we examine
the format of the classifier inputs that we will use, as the composition of these objects will dictate the
kinds of features that are accessible for this problem. In brief, we will be using a collection of images
of handwritten digits called the Modified National Institute of Standards and Technology Database
(henceforth referred to as mnist) [2].
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kvℓ γe3 kvℓ γe3 kvℓ γe3 kvℓ γe3 kvℓ γe3

0v1 5.0 1v2 8.0 2v4 4.2 3v7 8.0 5v7 4.7

0v2 8.0 1v3 8.0 2v5 11.4 3v8 16.2 5v8 4.9

0v3 4.1 1v4 30.7 2v6 11.5 3v9 8.0 5v9 11.3

0v4 15.0 1v5 8.0 2v7 15.1 4v5 11.1 6v7 16.1

0v5 8.0 1v6 23.8 2v8 8.0 4v6 14.6 6v8 24.5

0v6 2.7 1v7 15.2 2v9 8.0 4v7 8.0 6v9 4.9

0v7 8.0 1v8 8.0 3v4 4.1 4v8 15.8 7v8 11.0

0v8 14.5 1v9 8.0 3v5 11.3 4v9 11.6 7v9 20.5

0v9 8.0 2v3 10.9 3v6 15.1 5v6 4.3 8v9 4.8

Table I: Tabulation of the optimized γ values. Note that these values are all multiplied by 1093, meaning that
even the largest optimized γ is much smaller than the fixed-γ value of 1.

3 0

Figure 6: Plots of two images provided in the training data set, created by calling the vis_dig function. The
label for each picture, as defined by the mnist data set, is northwest of both handwritten numbers.

This surface level information is not sufficient to inform feature definition, so we describe our inputs,
the images in mnist, in increasing detail in hopes of discovering potential features that we can use. Each
datum in mnist is a row representation of a 28 × 28 matrix2. Each element in these row vectors is
prescribed by the uint8 grayscale value for its corresponding pixel in the square matrix representation.
Thus, when reconstructed correctly, each row portrays an image of a handwritten digit, as can be seen
in Fig. (6). A simple function that visualizes these pictures along with their intended label, vis_dig,
can be found in Appendix D.

With this definition we notice that the building blocks of these images are the pixels, and that each
building block has an integer value on the range [0, 255]. Jointly, we notice that other than image size
(which in this case is fixed) any characteristic could be expressed as some linear combination of the
pixels. It follows that the smallest set of features that would assuredly encompass all of the possible
images would be the uint8 value of each of the 784 pixels.

Simultaneously, we know that the total number of features that we choose to utilize will have a
2Relationships between the linear and two dimensional representations of a matrix are explained in Appendix B.
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Figure 7: Visualization of the pixels that won’t be considered in our solution to this problem. Pixels that will
be removed are shaded. The removal of the shaded pixels reduces the number of pixels per image from 784 to
676.

significant effect on computation time, meaning that reducing the number of pixels that we use is
beneficial. Fortunately, each image has a one pixel width border of padding in which all values are set to
zero. These added pixels are not helpful to us, so we wish to remove them in order to reduce the number
of extraneous features in our problem set. A visualization of the pixels that we will be removing can be
seen in Fig. (7). To efficiently remove these pixels, we rely on the relation between the one dimensional
and two dimensional representations, which is explored in Appendix B.

Before we declare that our data is in a form suitable to use for our classifiers, we will convert the uint8
values into doubles, and then divide everything by 255, the maximum value an element can have. This
division normalizes our inputs, and converting to the double data type prevents loss of information due
to rounding. Although not technically necessary here, as all features have the same domain, normalizing
is good practice and in this case will result in smaller z∗ coefficient values. As our final modification to
the data, we append a 1 to the end of each of the image rows. The coefficient associated with this 1 is
analogous to the y-direction shift b in the canonical equation for a line in two dimensions y = mx+ b.

4 Results
With our formulations precisely defined, Matlab implementation of our two classifiers MLS and MLP
is, in general, rather straight forward. A significant contributor to the ease of our implementation is the
Matlab-based convex modeling framework: CVX [5], which was used to solve the 45 linear programs
that comprise MLP. CVX has built-in access to four solvers: SDPT3, SeDuMi, Gurobi, and MOSEK.
The former two of this set are open source, while the latter two are for commercial use. Although aca-
demic licensing for the commercial solvers is easily obtainable, and the commercial solvers are in some
cases orders of magnitude faster than their counterparts, we choose instead to use SeDuMi, one of the
open source solvers, in support of the open source movement.

Returning to the derivation of our classifiers, we recall that fundamentally each binary classifier is a
set of scalars mapped to different pixels on a 28× 28 grid. In order to build a more robust understand-
ing of the differences between our binary classifiers, we can visualize them with a pixel heat map. The
coloring of each pixel on these heat maps is determined by the scalar value associated with that pixel
in the binary classifier that is being visualized. To reinforce our interpretation of these heat maps, we
will outline what various colors mean for a hypothetical kvℓ classifier. A dark red pixel corresponds to
a large positive value in the binary classifier Ckvℓ. This in turn means that if an input image O has this
pixel filled in, then our classifier is much more likely to classify O as digit k. In contrast, a dark blue
pixel corresponds to a large negative value in Ckvℓ, implying that if O has this pixel filled in it is more
likely to be digit ℓ. A yellow pixel represents a classifier value near zero, which means that a this pixel
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is not particularly influential in determining the difference between k and ℓ. Note that when analyzing
the least squares classifier visualizations, replace ℓ with all digits that are not k.

Visualizations of the binary classifiers that make up MLS can be seen in Fig. (8). Before moving on to
the binary classifiers in MLP, we examine these plots on a surface level for general trends. Interestingly,
we can see that these heat maps seem to give an impression of their corresponding digit. Personally, I
think that the k = 0 and the k = 3 heat maps create a shape most similar to their digit, while the k = 9
heat map is the least related. Another interesting occurrence is that, in general, the more central pixels
have a significantly smaller magnitude than those nearest the border padding.

In order to discern the difference that the value of γ plays in our linear program formulation, we
decide to evaluate two versions of our formulation. The first, which we will designate as MLP1, will use
a constant γ = 1 for all classifiers, while the second classifier MLPopt implements the γ values shown
in Table I. As there are a total of 45 binary classifiers for both MLPopt and MLP1, a small selection
of the component binary classifiers are visualized in Fig. (9). When examining the differences between
the heat maps, it is clear that the coefficients seen in the MLP1 visualizations have magnitudes that
are significantly larger than those found in MLPopt. It is also much more difficult to see patterns in the
fixed-γ classifier, and the local variance of pixel value is very large.

4.1 Feature Engineering
Classifiers have two primary performance metrics: duration of training time and accuracy of the classifier
on novel data. One method of improving either, or both, of these metrics is called feature engineering,
which is characterized by removing unnecessary features, crafting additional features as some function
of already existing features, or some combination of the two. Our removal of border pixels was then a
rudimentary implementation of feature engineering.

The most straightforward next step for our problem would be to repeat our border pixel removal
again, reducing the size of our evaluation space to the central 24 × 24 grid. It turns out that this is
actually a rather effective way to significantly reduce the total number of features we are using without
losing a significant amount of classifier accuracy. In an attempt to mitigate the reduction in success
rate that our pixel removal has accrued, we will add some of the information that we have taken away
back into the inputs. For each cardinal direction, we add a row or column of pixels that is the average
of the missing pixels. In this state, our set of features is comprised of the central 14 × 14 pixels plus
an additional 4 ∗ 14 features which are the weighted averages of the removed border regions. Based on
some of the trends that we see in the MLPopt classifier, we also create 5 additional features. All of
these features are the average of a region that often exhibited a significant majority of either positive or
negative coefficients. The features for this classifier, which we will call MLPfeat, are outlined on top of
the 0v1 heat map in Fig. (10). Two additional heat map visualizations can be seen in Fig. (11).

4.2 Analysis
Although there are many different ways to measure accuracy for a multi-classifier, we will use two of the
more general types of metric. The first, overall error rate, denoted Eoa, represents the likelihood that
our classifier makes a mistake. In other words this is the total number of errors, divided by the sample
size. The other measurements that we will use to evaluate our classifier’s accuracy are the true label k
rates, denoted L(k). These metrics can be thought of as the fraction of images labeled as digit k that
were correctly classified as digit k.

The values of these metrics for each of our classifiers operating on the testing data can be viewed in
Table II. We note that across the board, the digits 8 and 9 are particularly difficult to identify, while
0 and 1 are rather easy to pick out. This makes sense as there are many variations of the handwriting
patters for 8 and 9 compared to 0 and 1. We also want to determine whether or not our classifiers are
overfit, a descriptor given to models that have been trained on too much data. When this happens,
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Figure 8: In this figure, the weighting of each pixel in the coefficient matrix zk for each digit k ∈ {0, 1, . . . , 9}
is mapped to a color (northeast corner). The digit k can be seen in the northwest corner of its corresponding
image. Note that we have included the one pixel width border that was removed during pre-processing, and
that the value of each of these pixels has been set to 0. The colormap used in this image originates from the
ColorBrewer package, and its bounds were informed by a Fig. (14.3) in Boyd and Vandenberghe [3].

12

https://www.mathworks.com/matlabcentral/fileexchange/45208-colorbrewer-attractive-and-distinctive-colormaps


MLP1 MLPopt

0v1 0v1

0v2 0v2

0v3 0v3

Figure 9: Coefficient visualizations for three different classifiers (0v1, 0v2, and 0v3). Similarly to all other
coefficient visualizations in this report, we have included the initial 1 pixel border and used the same colormap
and colormap limits. This uniformity assists in our ability to compare these classifiers in future sections.
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+ +

Figure 10: Visualization of the feature coefficients for the 0v1 binary classifier in MLPfeat. Outlined in black
are the regions that were averaged to create our engineered features. Note that the features in the topmost image
are a weighted average of the 6 pixels they are comprised of. The pixels closest to the center of the image are
weighted significantly greater than those near the edge.
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0v2

+ +

(a) MLPfeat 0v2 binary classifier

0v3

+ +

(b) MLPfeat 0v3 binary classifier

Figure 11: Visualization of the feature coefficients for the 0v2 and 0v3 binary classifier in MLPfeat. Outlined in
black are the regions that were averaged to create our engineered features. We see that there are general trends
along the edges that are much more pronounced than the edges coefficients had been in previous classifiers.
Additionally, we note that the slightly off center region in the images furthest to the right are both dork blue,
suggesting that an input image of a 0 rarely has those pixels filled in.
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Value (%)

Metric MLS MLP1 MLPopt MLPfeat

Overall Error Rate (Eoa) 13.99 7.92 5.20 6.28

True Label Rates (L(k)) 0 96.33 95.61 98.47 98.16

1 97.53 96.92 98.77 98.41

2 78.68 89.53 93.41 92.44

3 86.93 92.67 94.65 93.56

4 89.71 94.30 95.72 95.32

5 73.88 88.90 91.03 89.46

6 91.23 93.01 96.76 95.30

7 86.09 92.41 94.65 93.87

8 77.93 88.09 91.58 89.73

9 79.48 88.50 92.17 89.99

∆Eoa 90.26 6.18 0.32 0.06

Table II: Comparison of the accuracy metrics of our least squares classifier MLS and our three linear program
formulated classifiers, MLP1, MLPopt, and MLPfeat operating on the testing data. The last two entries show
the difference between our classifiers acting on the testing versus the training data, which is used to investigate
whether or not a classifier has been overtrained. The equation for ∆Eoa is defined in Eq. (18).

our classifier becomes really good at differentiating between inputs that are similar to the ones it was
trained on, but will typically perform poorly when operating on inputs that are unique. If a classifier is
overfit, we would expect to see overall error rates that were significantly worse than those for the training
data. Most of our classifiers seem to be within an acceptable margin of error, but the error difference
between testing and training data for MLP1 is an order of magnitude larger than the others. Based on
this quantitative comparison and our visualizations, we conclude that MLS, MLPopt, and MLPfeat are
not overfit, while MLP1 most likely is. The definition of ∆Eoa can be seen in Eq. (18).

∆Eoa = Eoa(test)− Eoa(train) (18)

Another method of representing the performance of a classifier is a confusion matrix. For each type
of label, these matrices display the number of inputs that were classified as each different potential out-
come. These are often an effective way to identify where a classifier is having difficulties. The confusion
matrices for MLS, MLPopt, and MLPfeat can be found in Appendix C.

Although we know that there are significantly faster algorithms for this problem, it is still relevant to
examine the total amount of time that it took to train each of these classifiers. Our least squares approach
was the fastest at 2.12 minutes and .21 minutes per classifier. Training for MLP1 took 110.64 minutes
with an average binary classifier time of 2.46 minutes, while training MLPopt took 101.77 minutes with
an average classifier time of 2.26 minutes. The classifier created with our engineered features, MLPfeat,
was much faster than the other linear programming classifiers with a total time of 53.35 minutes and
a mean per binary classifier time of 1.19 minutes. Using MLPopt and MLPfeat for our measurement,
we can say that by decreasing total number of features by 62% (676 −→ 257) we were able to train our
classifier 1.9 times as fast (101.77 −→ 53.35) at the cost of increasing our overall error rate by about 1%
(5.20% −→ 6.28%).
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5 Conclusion
We recall that the goal of this report was to create a multi-classifier for images of handwritten digits
using both a least squares and linear programming approaches. While formulating our problem, we
discussed how classification can be thought of as a minimization problem through the aid of our real
world coin sorting example, and then formulated both the least squares and linear programming versions
of our classification problem. While building intuition for the linear programming approach, we verified
that including a term for the maximization of the margin is beneficial to our resulting classifiers through
the use of a smaller toy problem.

With our formulations fully defined the entire process was implemented in Matlab, and classifiers for
each method were found using built in Matlab functions for the least squares classifier, and the SeDuMi
solver via CVX for the linear programming classifiers. Our results were then analyzed individually and
comparatively, which led to the conclusion that the fixed-γ solver MLP1 seems to be overtrained, while
the other three classifiers do not. Additionally, we found that our linear program classifiers did perform
significantly better than our least squares solver, but at the cost of a significant increase in training time.

One potentially interesting direction to go with the project would be to compare the least squares
and linear programming methods independently from the methods of multi-classification (maximum of
"one vs. other" and DAG using "one vs. one"). Another idea worth exploring would be to implement
an infinity norm linear programming approach, and examine the differences between it and our other
classifiers.
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A Directed Acyclic Graph Visualizations
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Figure 12: Visualization of the directed acyclic graph (DAG) used to determine the classification of each input
for the linear programming approach. If a classifier determines a positive value for an input, flow continues along
the red arrow, while obtaining a negative value results in the input being passed along the blue arrow. Once an
input reaches a green circle, the classifier has designated that input as the value inside the circle.
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Figure 13: An additional visualization of the DAG used for the linear programming classifiers. The key
difference between this figure and Fig. (12) is that each binary classifier is given an index an index in a one
dimensional container. This representation is not necessary when reading the report, but is used in the code
implementation.

B 1D - 2D Index Relations
When converting from a one dimensional array, Pn2 , to a two dimensional array, Qn×n, Eq. (19) can
be used to determine corresponding indices3. Similarly, Eq. (20) can be used to convert from two di-
mensional indices to one dimensional indices. A visual representation of the pixel locations (v and w
in an n×nmatrix) their corresponding index in the provided form (u in a 1×n2 array) is given in Eq. (21).

g : Pu −→ Qv,w

where g(u) = (v, w) =

(
(u− 1 (mod n)) + 1,

⌊
u− 1

n

⌋
+ 1

)
(19)

h : Qv,w −→ Pu

where h(v, w) = u = n(w − 1) + v (20)



1 n+ 1 2n+ 1 · · · n(n− 1) + 1

2 n+ 2 2n+ 2 · · · n(n− 1) + 2

3 n+ 3 2n+ 3 · · · n(n− 1) + 3
...

...
...

. . .
...

n 2n 3n · · · n2

 (21)

3Eq. (19) and Eq. (20) are only true when converting between arrays and matrices whose indexing begins at 1.
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C Confusion Matrices

Prediction MLS(test)

Digit k 0 1 2 3 4 5 6 7 8 9 Total

0 944 0 18 4 0 23 18 5 14 16 1042

1 0 1107 54 18 22 18 10 40 46 11 1326

2 1 2 812 23 6 3 10 16 11 2 886

3 2 2 25 878 1 72 0 6 30 17 1033

4 2 3 14 5 881 24 22 26 27 80 1084

5 7 1 0 17 5 659 17 0 39 1 746

6 14 5 41 9 10 24 874 1 15 1 994

7 2 1 23 25 2 14 0 885 13 75 1040

8 7 14 39 21 11 38 7 0 759 4 900

9 1 0 6 10 44 17 0 49 20 802 949

All 980 1135 1032 1010 982 892 958 1028 974 1009 10000

(a) MLS(test)

Prediction MLPopt(test)

Digit k 0 1 2 3 4 5 6 7 8 9 Total

0 965 0 2 2 2 6 2 1 0 0 980

1 0 1121 2 3 0 2 2 1 4 0 1135

2 4 1 964 9 14 6 10 9 13 2 1032

3 0 0 9 956 1 16 1 10 14 3 1010

4 1 0 4 1 940 1 8 2 3 22 982

5 7 1 3 32 3 812 12 2 17 3 892

6 9 2 5 1 3 10 927 0 1 0 958

7 0 4 20 5 8 2 1 973 2 13 1028

8 4 2 8 16 5 30 8 7 892 2 974

9 4 5 0 4 26 10 2 18 10 930 1009

All 994 1136 1017 1029 1002 895 973 1023 956 975 10000

(b) MLPopt(test)
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Prediction MLPfeat(test)

Digit k 0 1 2 3 4 5 6 7 8 9 Total

0 962 0 2 2 1 9 2 1 1 0 980

1 0 1117 4 3 0 2 2 1 6 0 1135

2 4 1 954 10 14 10 14 14 10 1 1032

3 2 0 11 945 0 26 1 10 9 6 1010

4 1 0 3 4 936 1 7 3 2 25 982

5 8 1 4 42 4 798 13 6 13 3 892

6 12 2 7 2 7 14 913 0 1 0 958

7 1 7 21 3 7 3 0 965 8 13 1028

8 3 6 4 18 7 32 9 8 874 13 974

9 6 6 1 7 35 13 1 21 11 908 1009

All 999 1140 1011 1036 1011 908 962 1029 935 969 10000

(c) MLPfeat(test)

Table III: Confusion matrices for the classification of testing images using the least squares classifier,
MLS (a) and the linear programming classifiers, MLPopt (b) and MLPfeat (c). All diagonal entries,
which represent the number of images correctly classified for each digit, are blue, while the off diagonal
entries are orange.
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D Matlab Code

D.1 Linear Program Training Script

%% Create Fixed Gammas Classifier
[A1 ,b1 ,t1] = ...

LP_classifier(’fixed_gammas ’,’fixed_gammas.mat’,’prep_basic ’);

%% Create Optimized Gammas Classifier
[Aopt ,bout ,topt] = ...

LP_classifier(’opt_gammas ’,’opt_gammas.mat’,’prep_basic ’);

%% Create Classifier with Feature Engineering
[Afeat ,bfeat ,tfeat] = ...

LP_classifier(’feat’,’opt_gammas.mat’,’prep_MF ’ ,6,[1 1 1 1 2 5]);

D.2 Linear Program Testing Script

%% Call evaluation function for fixed gamma classifier
[Mconf_fixed ,oer_fixed ,tlk_fixed] = ...

eval_LPMC(’te’,’HP_fixed_gammas.mat’,’prep_basic ’);

%% Call evaluation function for optimized gamma classifier
[Mconf_opt ,oer_opt ,tlkopt] = ...

eval_LPMC(’te’,’HP_opt_gammas.mat’,’prep_basic ’);

%% Call evaluation function for feature engineering classifier
[Mconf_feat ,oer_feat ,tlk_feat] = ...

eval_LPMC(’te’,’HP_feat.mat’,’prep_MF ’ ,6,[1 1 1 1 2 5]);

D.3 Feature Engineering Script Script

%% Load images
load(’mnist.mat’,’images_test ’);

%% Call prep function appropriately
images_test_play = prep_MF(images_test ,6,[1 1 1 1 2 5]);

%% Save
save(’images_test_play.mat’,’images_test_play ’)
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D.4 Linear Program Classifier Function

function [A,b,time] = LP_classifier(name ,gamma_mat ,prep_func ,varargin)
%LP_CLASSIFIER

%% Create strings for prep function , loading data , and saving data
hyper_mat = sprintf(’HP_%s.mat’,name);
xdata_mat = sprintf(’data_%s’,name);

%% Load in the data
% Training image data
load(’mnist.mat’,’images ’,’labels ’);

% Pre -process training images
S = feval(prep_func ,images ,varargin {:});

% Remember size of S matrix
% N_img = number of rows = number of images input
% N_feat = number of columns = number of features
[N_img , N_feat] = size(S);

% Create and save logical array containing relevant label data
% True implies image at the corresponding index is labeled as the current

digit.
digitKey = labels == 0:9;

% Create list of all digit pairings
N_pairs = nchoosek (10 ,2);
pairs = nchoosek (0:9 ,2);

% Sort rows by corresponding label
im_sort = arrayfun(@(d) S(digitKey(:,d) ,:) ,1:10,’UniformOutput ’,false);

% For each digit , save the number of images whose labels are that digit
N_digimg = arrayfun(@(d) size(im_sort{d},1) ,1:10);

% Initialize containers for multiple variables
x_star = zeros(N_feat ,N_pairs);
f_tilde = zeros(N_img ,N_pairs);
time = zeros(1,N_pairs);

% Load in gammas to use for these classifiers
load(gamma_mat ,’gammas ’);

...
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...

% Solve each least squares problem with CVX
for p = 1: N_pairs

N1 = N_digimg(pairs(p,1)+1);
N2 = N_digimg(pairs(p,2)+1);
cvx_begin

variable x(N_feat)
variable u(N1) nonnegative
variable v(N2) nonnegative
minimize ( norm( x ) + gammas(p)*( sum(u) + sum(v) ) )
subject to

im_sort{1,pairs(p,1) +1}*x + eye(N1)*u >= 1
im_sort{1,pairs(p,2) +1}*x - eye(N2)*v <= -1

cvx_end

x_star(:,p) = x;
f_tilde(:,p) = S*x;
time(p) = cvx_cputime;
fprintf ([’\n\t\t\t*********************************************\n’ ...

’\t\t\t %i vs %i Classifier calculated\n\n’ ...
’\t\t\t Duration of previous LP: %.2f minutes\n’ ...
’\t\t\t Total CPU time: %.2f minutes\n\n’ ...
’\t\t\t %i classifiers remaining\n’ ...
’\t\t\t*********************************************\n\n’], ...
pairs(p,1),pairs(p,2),time(p)/60,sum(time)/60,N_pairs -p);

end

%% Save properly formatted A and b that define each hyperplane for Shalom
A = x_star (1:end -1,:);
b = x_star(end ,:);
save(hyper_mat ,’A’,’b’);
save(xdata_mat ,’time’,’N_digimg ’,’varargin ’);

D.5 Basic Image Prep Function

function A = prep_basic(imgs)
%PRE_PROC_BASIC pre -processing images
% Function to get input images into the desired form for the least
% squares machine learning problem. This involves changing the data type
% to double , dividing by 255, and removing the "border" pixels of each
% image.

% Check and save size of input
% Input should have each image as a single row in a matrix. That matrix
% should be X by Y, where X is the number of input images , and Y is the
% total number of pixels in an image. Because the images are square , the
% sqaure root of Y will be a natural number.
n = sqrt(size(imgs ,2));
if n ~= floor(n)

error(’Input images should be a row representation of a square matrix.’);
end
N = size(imgs ,1);

...
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...

% Create mask for input matrix
% We want to remove all "border" pixels from this data. We have already
% determined the indices of the elements to remove , so we create a mask
% in which ones will be removed , and zeros will remain.
mask = zeros(1,n^2); % initialize
mask( 1:n ) = 1; % left
mask( (n+1):n:(n*(n-1) +1) ) = 1; % top
mask( n:n:(n*n) ) = 1; % bottom
mask( (n*(n-1) +1):(n^2) ) = 1; % right
mask = repmat(mask ,size(imgs ,1) ,1); % stack rows X times

% Convert image values to double and normalize
% Because the input has values from [0,255], we divide the whole thing by
% 255 in order to obtain only values between [0,1]. We also transpose the
% input , so that each column is a different image , because of the way
% linear indices are defined.
imgs = double(imgs)’ / 255;

% Use the mask and reshape output
% Logical indexing allows us to remove all undesired indices from the
% input matrix in one operation , but the output is a one dimensional
% array. Using the reshape function and knowledge of the output geometry
% we reconstruct our masked images. Finally , we take the transpose again ,
% so that each row is a different image.
imgs = reshape(imgs(~mask ’) ,(n-2)^2,N) ’;

% Add column of ones to end of imgs to get A matrix for basic problem
% train_s_stack is a column vector containing the pixel values of each
% image in the training data set concatenated with a [1], which
% will correspond to the constant shift of our hyperplane.
A = [ imgs , ones(N,1) ];

end
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D.6 Feature Engineering Prep Function

function A = prep_MF(imgs ,m,w)
%PRE_MF pre -processing images
% Function to get input images into the desired form for the least
% squares machine learning problem. This involves changing the data type
% to double , dividing by 255, and removing the "border" pixels of each
% image.

% Check and save size of input
% Input should have each image as a single row in a matrix. That matrix
% should be X by Y, where X is the number of input images , and Y is the
% total number of pixels in an image. Because the images are square , the
% sqaure root of Y will be a natural number.
n = sqrt(size(imgs ,2));
if n ~= floor(n)

error(’Input images should be a row representation of a square matrix.’);
end
N = size(imgs ,1);

% Convert image values to double and normalize
% Because the input has values from [0,255], we divide the whole thing by
% 255 in order to obtain only values between [0,1].
imgs = double(imgs) / 255;

% Indices of the elements in the leftmost and rightmost columns.
% Add some value k*n to the entire vector to shift k columns to the right ,
% subtract k*n to shift k columns to the left.
left = 1:n;
right = (n*(n-1)+1):(n^2);

% Indices of the elements in the top and bottom rows. Add some value k to
% the entire vector to shift k rows down , subtract by k to shift k rows up.
top = 1:n:(n*(n-1) +1);
bottom = n:n:(n*n);

% Save number of pixels that will be removed from each row/column
m0 = m+2;
m1 = n-1-m;

% Take the weighted average of the border pixels that we are going to
% remove , excluding the outermost border pixels , as these will always be
% zero.
ave_left_mpix = imgs(:, left(m0:m1)+n ) * w(1);
ave_right_mpix = imgs(:, right(m0:m1)-n ) * w(1);
ave_top_mpix = imgs(:, top(m0:m1)+1 ) * w(1);
ave_bottom_mpix = imgs(:, bottom(m0:m1)-1 ) * w(1);
for i = 2:m

ave_left_mpix = ave_left_mpix + imgs(:, left(m0:m1)+i*n ) * w(i);
ave_right_mpix = ave_right_mpix + imgs(:, right(m0:m1)-i*n ) * w(i);
ave_top_mpix = ave_top_mpix + imgs(:, top(m0:m1)+i ) * w(i);
ave_bottom_mpix = ave_bottom_mpix + imgs(:, bottom(m0:m1)-i ) * w(i);

end

...

26



...

ave_left_mpix = ave_left_mpix / sum(w);
ave_right_mpix = ave_right_mpix / sum(w);
ave_top_mpix = ave_top_mpix / sum(w);
ave_bottom_mpix = ave_bottom_mpix / sum(w);

ave_border_mpix = [ ave_left_mpix ave_right_mpix ave_top_mpix ave_bottom_mpix
];

%%
% Average of center [shifted by (1,1)] 7x4 pixels
feat_mask = padarray(true (7,4) ,[10 13],’pre’);
feat_mask = padarray(feat_mask ,[11 11],’post’);
feat_mask = reshape(feat_mask ,1 ,[]);
more_feats = mean(imgs(:, feat_mask) ,2);

% Average of top left corner of innermost 20x20 square
feat_mask = padarray(true (10) ,[4 4],’pre’);
feat_mask = padarray(feat_mask ,[14 14],’post’);
feat_mask = reshape(feat_mask ,1 ,[]);
more_feats = [ more_feats mean(imgs(:, feat_mask) ,2) ];

% Average of bottom left corner of innermost 20x20 square
feat_mask = padarray(true (10) ,[14 4],’pre’);
feat_mask = padarray(feat_mask ,[4 14],’post’);
feat_mask = reshape(feat_mask ,1 ,[]);
more_feats = [ more_feats mean(imgs(:, feat_mask) ,2) ];

% Average of top right corner of innermost 20x20 square
feat_mask = padarray(true (10) ,[4 14],’pre’);
feat_mask = padarray(feat_mask ,[14 4],’post’);
feat_mask = reshape(feat_mask ,1 ,[]);
more_feats = [ more_feats mean(imgs(:, feat_mask) ,2) ];

% Average of top right corner of innermost 20x20 square
feat_mask = padarray(true (10) ,[14 14],’pre’);
feat_mask = padarray(feat_mask ,[4 4],’post’);
feat_mask = reshape(feat_mask ,1 ,[]);
more_feats = [ more_feats mean(imgs(:, feat_mask) ,2) ];

% Create mask for input matrix
% We want to remove all "border" pixels from this data. We have already
% determined the indices of the elements to remove , so we create a mask
% in which ones will be removed , and zeros will remain.
[top_inds ,bottom_inds] = deal(zeros(1,n*m));
for i = 1:m+1

top_inds(n*(i-1) +1:n*(i-1)+n) = top+(i-1);
bottom_inds(n*(i-1) +1:n*(i-1)+n) = bottom -(i-1);

end
top_inds = sort(top_inds);
bottom_inds = sort(bottom_inds);

...
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...

mask = zeros(1,n^2); % initialize
mask( 1:(m+1)*n ) = 1; % left
mask( n*(n-(m+1))+1:n^2 ) = 1; % right
mask( top_inds ) = 1; % top
mask( bottom_inds ) = 1; % bottom
mask = repmat(mask ,size(imgs ,1) ,1); % stack rows X times

% Transpose images so that we can use linear indexing
imgs = imgs ’;

% Use the mask and reshape output
% Logical indexing allows us to remove all undesired indices from the
% input matrix in one operation , but the output is a one dimensional
% array. Using the reshape function and knowledge of the output geometry
% we reconstruct our masked images. Finally , we take the transpose again ,
% so that each row is a different image.
imgs = reshape(imgs(~mask ’) ,(n-2*(m+1))^2,N) ’;

% Add the averaged value of the 3 border pixels (after removing the
% outermost pixels) as features.
imgs = [ imgs ave_border_mpix more_feats ];

% Add column of ones to end of imgs to get A matrix for basic problem
% train_s_stack is a column vector containing the pixel values of each
% image in the training data set concatenated with a [1], which
% will correspond to the constant shift of our hyperplane.
A = [ imgs , ones(N,1) ];

end
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D.7 Script to Explore Weighting Values

%% Initialize variables
N_pairs = nchoosek (10 ,2);
pairs = nchoosek (0:9 ,2);
[x,t,best_u ,best_d] = deal(cell(N_pairs ,1));

%% Find "optimal" gamma for each classifier
for i = 1: N_pairs

[x{i},t{i},best_u{i},best_d{i}] = ...
gamma_opt (.008, pairs(i,1),pairs(i,2),’train_setup.mat’,’test_setup.mat’

);
end

% Sort gamma output
gammas = zeros(N_pairs ,1);

for i = 1: N_pairs
% Save best up and down gamma of current classifier for clarity
U = best_u{i};
D = best_d{i};

% Based on number of false positives and negatives , choose which gamma
% is the better of the two. If both gammas resulted in the same number
% of false positives and negatives , choose the smaller gamma. If the
% number of false positives is greater in one while the number of false
% negatives is greater in the other , choose the one that results in the
% least number of errors total.
if U(1) == D(1) && U(2) == D(2)

gammas(i) = D(3);
elseif U(1) < D(1)

if U(2) <= D(2)
gammas(i) = U(3);

else
dif = [D(1) - U(1),U(2) - D(2)];
if dif(1) > dif (2)

gammas(i) = U(3);
else

gammas(i) = D(3);
end

end
else

if U(2) >= D(2)
gammas(i) = D(3);

else
dif = [U(1) - D(1),D(2) - U(2)];
if dif(1) > dif (2)

gammas(i) = D(3);
else

gammas(i) = U(3);
end

end
end

end

29



D.8 Function to Create a Single Binary Classifier with Weighting Input

function [x,f,t] = create_classifier(D1,D2 ,gamma ,setup)
%CREATE_CLASSIFIER
% Function to create a classifier between unique digits D1 and D2 that
% uses a weighting of gamma on the slack variables

% Verify that first two inputs are acceptable
% Note that if the latter of the two digits is smaller than the first we
% switch their order.
if mod(D1 ,1) || mod(D2 ,1) || D1 == D2 || D1 < 0 || D2 < 0 || D1 > 9 || D2 > 9

error(’First two inputs must be two unique digits.’)
elseif D1 > D2

temp = D2;
D2 = D1;
D1 = temp;
clear(’temp’);

end

% Load in all additional necessary data
load(setup); %#ok <LOAD >

% Determine index of input pairing
[~,p] = ismember ([D1 D2],pairs ,’rows’);

% Save the number of images whose label is D1 or D2
N1 = N_digimg(pairs(p,1)+1);
N2 = N_digimg(pairs(p,2)+1);

% CVX Problem
cvx_begin

variable x(N_feat)
variable u(N1) nonnegative
variable v(N2) nonnegative
minimize ( norm( x ) + gamma *( sum(u) + sum(v) ) )
subject to

im_sort{1,pairs(p,1) +1}*x + eye(N1)*u >= 1
im_sort{1,pairs(p,2) +1}*x - eye(N2)*v <= -1

cvx_end

% Classifier values for each image
f = S*x;

% Time to create this solver
t = cvx_cputime;

end
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D.9 Function to Test Single Binary Classifier

function [Fneg ,Fpos] = test_classifier(x,D1 ,D2 ,setup)
%TEST_CLASSIFIER
% Function to test a single classifier , requires input of the two digits
% that are being chosen between (D1,D2).

% Load necessary data
load(setup); %#ok <LOAD >

% Use classifier on testing data
f = S*x;

% Take the subset of outputs whose label was supposed to be either D1 or D2
d1 = f(labels_test == D1);
d2 = f(labels_test == D2);

% Save the index of the false negatives (incorrectly labeled as D1) and
% false positives (incorrectly labeled as D2).
Fneg = find(d1 < 0);
Fpos = find(d2 >= 0);

end

31



D.10 Function Used for Margin Verification

function area = margin_test(outlier_flag ,w)
%MARGIN_TEST

if ~exist(’outlier_flag ’,’var’)
outlier_flag = 0;
w = 1;

end

S = 50;
if outlier_flag

N_out = 2;
else

N_out = 0;
end
x = rand(S-N_out ,1);
y = rand(S-N_out ,1);

lr = .95;
ur = 1.1;

x1 = x((x + y) <= lr);
y1 = y((x + y) <= lr);

if outlier_flag
linex = .1* rand(1,N_out) + [.7 .75];
liney = 1-linex;
x1 = [ x1; linex ’+.15* rand(N_out ,1) ];
y1 = [ y1; liney ’+.15* rand(N_out ,1) ];

end

x2 = x((x + y) >= ur);
y2 = y((x + y) >= ur);

N1 = size(x1 ,1);
N2 = size(x2 ,1);

A1 = [x1 -y1 ones(N1 ,1)];
A2 = [x2 -y2 ones(N2 ,1)];

cvx_begin quiet
variable z_a (3)
variable u_a(N1) nonnegative
variable v_a(N2) nonnegative
minimize ( sum(u_a) + sum(v_a) )
subject to

A1 * z_a + eye(N1)*u_a >= 1
A2 * z_a - eye(N2)*v_a <= -1

cvx_end

...
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...

cvx_begin quiet
variable z_b (3)
variable u_b(N1) nonnegative
variable v_b(N2) nonnegative
minimize ( norm(z_b) + w*(sum(u_b) + sum(v_b)) )
subject to

A1 * z_b + eye(N1)*u_b >= 1
A2 * z_b - eye(N2)*v_b <= -1

cvx_end

p1_a = [ 0, z_a(3) /z_a (2) ];
p2_a = [ 1, (z_a (1) + z_a (3))/z_a (2) ];
p1_b = [ 0, z_b(3) /z_b (2) ];
p2_b = [ 1, (z_b (1) + z_b (3))/z_b (2) ];

area (1) = polyarea ([mean([lr ,ur]),mean([lr -1,ur -1]),p1_a (1),p2_a (1),mean([lr ,ur
])],[0,1,p1_a (2),p2_a (2) ,0]);

area (2) = polyarea ([mean([lr ,ur]),mean([lr -1,ur -1]),p1_b (1),p2_b (1),mean([lr ,ur
])],[0,1,p1_b (2),p2_b (2) ,0]);

end
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