
MCEN 5125: Optimal Design

Least Squares Classification
Jacob Haimes

1 Introduction
Even now, after the technological breakthroughs of telecommunications and mobile computers, the
United States Postal Service alone delivers well over 100 billion units of mail each year [1]. Imagin-
ing how many man-hours it takes to deliver all of this mail quickly makes it apparent that any way to
automate even a portion of this process would be invaluable. One way to improve the efficiency of this
task would be to use a computer to sort the addresses on each piece of mail. This, however, requires
machine learning. Luckily, we can actually utilize a tool that we have, up to this point, primarily used
for curve fitting: least squares optimization. In this paper we will attempt to sort images of handwritten
digits using a least squares classifier.

2 Pre-Processing

2.1 The Data
Before we can begin to construct our classifiers, we first must obtain some set of data. For this task,
we will be using a slightly pre-processed version of the Modified National Institute of Standards and
Technology Database, which we will designate as mnist [2]. We then manipulate the data from mnist
into a desirable form. Each provided datum is a linear representation of a 28× 28 matrix. Each element
within these matrices contains the uint8 grayscale value for its corresponding pixel. When formatted
correctly, each row can reconstruct an image of a handwritten digit. A column vector containing the
correct digit for each image (row) is also provided in the data set. I wrote a simple function to visualize
these pictures easily along with their intended label, vis_dig, which can be found in Appendix B.

3 0

Figure 1: Plots of two images provided in the training data set, created by calling the vis_dig function. The
label for each picture, as defined by the mnist data set, is northwest of both handwritten numbers.

Each image has a one pixel width border of padding in which all values are set to zero. These added
pixels are not helpful to us, so we wish to remove them in order to reduce the number of extraneous
features in our problem set. A visualization of the pixels that we will be removing can be seen in Fig. (2).
Understanding the relation between the one dimensional array representation that we are provided and
the two dimensional matrix representation that maps easily to the images will allow us to efficiently
remove whatever pixels we desire.

2.2 Exploring Index Relations
When converting from a one dimensional array, Pℓ2 , to a two dimensional array, Qℓ×ℓ, Eq. (1) can be
used to determine corresponding indices1. Similarly, Eq. (2) can be used to convert from two dimensional

1Eq.(̇1) and Eq. (2) are only true when converting between arrays and matrices whose indexing begins at 1.

1

Figure 2: Visualization of the pixels that won’t be considered in our solution to this problem. Pixels that will
be removed are shaded. The removal of the shaded pixels reduces the number of pixels per image from 784 to
676.

indices to one dimensional indices. A visual representation of the pixel locations (v and w in an ℓ × ℓ
matrix) their corresponding index in the provided form (u in a 1× ℓ2 array) is given in Eq. (3).

g : Pu −→ Qv,w

where g(u) = (v, w) =

(
(u− 1 (mod ℓ)) + 1,

⌊
u− 1

ℓ

⌋
+ 1

)
(1)

h : Qv,w −→ Pu

where h(v, w) = u = ℓ(w − 1) + v (2)

1 ℓ+ 1 2ℓ+ 1 · · · ℓ(ℓ− 1) + 1

2 ℓ+ 2 2ℓ+ 2 · · · ℓ(ℓ− 1) + 2

3 ℓ+ 3 2ℓ+ 3 · · · ℓ(ℓ− 1) + 3
...

...
...

. . .
...

ℓ 2ℓ 3ℓ · · · ℓ2

 (3)

With these tools, it is clear that our "border" indices in the two dimensional ℓ× ℓ matrix correspond to
the following indices:

{1, 2, 3, . . . , ℓ}
∪ {ℓ+ 1, 2ℓ+ 1, 3ℓ+ 1, . . . , ℓ(ℓ− 1) + 1}
∪ {ℓ, 2ℓ, 3ℓ, . . . , ℓ2}
∪ {ℓ(ℓ− 1) + 1, ℓ(ℓ− 1) + 2, ℓ(ℓ− 1) + 3 . . . , ℓ2}.

Code to create an array whose value is 1 on the border and 0 otherwise (or vice versa) is trivial and can
be seen in the pre_proc function in Appendix B. We then take advantage of logical indexing to remove
all unwanted indices from our data.

2

3 Formulating the Least Squares Problem

3.1 Understanding Multi-Class Classifiers
Prior to using least squares to classify our ten digits, we must first understand how least squares can
be used as a Boolean classifier. A Boolean classifier can be described as a function whose input is a
vector s that contains n elements, and whose output is a single scalar value of ±1. Constructing a
Boolean classifier f̂ using the least squares method begins with a training set, that is, a list of m true
classifications y(m) corresponding to known vectors s(m). We now define a function f̃(s(i)) to be some
linear combination of p basis functions f (j), j ∈ {1, 2, . . . , p}, that is

f̃(s(i)) =

p∑
j=1

θ(j)f (j)(s(i)) + ν, (4)

where s(i) is a the ith image in stack s, θ ∈ R, and ν ∈ R. Furthermore, we will choose all θ(j), f (j), and
ν such that f̃(s(i)) minimizes the sum of squared error between y(i) and f̃(s(i)) ∀ i ∈ m. Mathematically,
this can be written

minimize
m∑
i=1

(
y(i) − f̃

(
s(i)

))2

. (5)

The range of typical least squares optimization, however, is not binary, so we will define our Boolean
classifier to be

f̂
(
s(i)

)
= sign

(
f̃
(
s(i)

))
, (6)

where sign of some real valued constant z is

sign(z) =

{
1, z ≥ 0

91, z < 0.
(7)

There are a few important aspects that we have not yet considered, the first being the choice of
our basis functions, f (j). Note that now we are examining our specific problem, digit recognition; our
choices for f (j), however, will generally be analogous to basis functions for other problems. Knowing
that some linear combination of our basis functions must allow us to obtain every possible input image,
the simplest set of basis functions would be

f (j)
(
s(i)

)
= val

(
s(i,j)

)
, i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, (8)

where val(s(i,j)) returns the normalized2 uint8 grayscale value of the pixel in s(i) at index j. In addition,
we will also include a single basis function that is the sum of all pixel values in an image; the scaler
value ν associated with this function can be thought of as a shift in the output dimension, much like the
y-intercept b in the canonical equation for a line in two dimensions, y = mx+ b. Although our classifier
would still work with many more equations, which is leveraged for "feature engineering," we will stick
to this simple option.

The other obstacle that we still must address is that there are ten categories in our digit classification
problem, not two. Perhaps we will create ten different Boolean classifiers f̂(0), f̂(1), . . . , f̂(9). Each
classifier f̂(k) would then classify the input image s(i) as the digit k, or as not the digit k. This wouldn’t
work, as there would be a problem if two different classifiers, f̂(α) and f̂(β), both determined that some
input s(i) should be classified as digit α and digit β, respectively. We recall, however, that our function
f̃ returns a real valued scalar, not a binary one, and that a larger positive value implies more certainty
in a classification. Our multi-class classifier, f̂M , can then be defined

f̂M

(
s(i)

)
= max

{
f̃(0)

(
s(i)

)
, f̃(1)

(
s(i)

)
, . . . , f̃(9)

(
s(i)

)}
, (9)

where max returns the digit of the classifier, k, that produced the largest value for f̃k(s
(i)).

2Because there are 256 possible values for a uint8 number, normalizing is equivalent to dividing by 256.

3

3.2 Building the Binary Classifiers
Although we now understand where we are going with this approach, we are still missing one component:
the actual values for the weighting of each pixel, θ(k), and the constant shift ν(k). Fortunately, finding
these coefficients can be thought of as a least squares optimization problem of the form

Ax = b, (10)

where

A =

s(1) 1

s(2) 1
...

...
s(m) 1

 =
[
s 1

]
, x =

θ
(1)
(k)

θ
(2)
(k)

...
θ
(n)
(k)

ν(k)

=

[
θ(k)

ν(k)

]
, b =

y
(1)
(k)

y
(2)
(k)

...
y
(m)
(k)

 = y(k),

and

y
(i)
(k) =

{
1, label(i) = k

91, otherwise.
(11)

The well known solution to the least squares problem,

x∗ = A†b, (12)

can then be used to find the values of the constants that define a Boolean classifier for each digit.
Visualizations of θ(k) can be seen in Fig. (3).

Before moving, we examine these plots on a surface level for general trends. Interestingly, we can see
that these heat maps seem to give an impression of their corresponding digit. Personally, I think that
the k = 0 and the k = 3 heat maps create a shape most similar to their digit, while the k = 9 heat
map is the least related. Another interesting occurence is that, in general, the more central pixels have
a significantly smaller magnitude than those nearest the border padding.

4 Classifying the Data

Now that we understand our multi-class classifier f̂M and our Boolean k classifiers f̃(k), we can use them
to sort our data. We will designate our training data, the 60000 images that the classifiers are to be
trained on, as traim_im, and our testing data, the 10000 images that will be used for testing, as test_im.

Recall that we must evaluate f̃(k)(s
(i)) for each digit, and then compare their results to choose our

final digit classification for image i. To efficiently calculate these values, Eq. (4) can be rewritten in the
typical matrix form, Ax = b, as

[
θ
(1)
(k) θ

(2)
(k) · · · θ

(n)
(k) ν(k)

]

s(i,1)

s(i,2)

...
s(i,n)

1

 = f̃(k)

(
s(i)

)
. (13)

Using terms that we have already defined, Eq. (13) can be simplified to

f̃(k)

(
s(i)

)
=

[
θ(k) ν(k)

] [s(i)

1

]
. (14)

4

0 1 2

3 4 5

6 7 8 9

Figure 3: In this figure, the weighting of each pixel in the coefficient matrix θ(k) for each digit k ∈ {0, 1, . . . , 9}
is mapped to a color (northeast corner). The digit k can be seen in the northwest corner of its corresponding
image. Note that we have included the one pixel width border that was removed during pre-processing, and that
the value of each pixel in this set has been set to θ

(j)

(k) = 0. The colormap used in this image originates from the
ColorBrewer package.

5

https://www.mathworks.com/matlabcentral/fileexchange/45208-colorbrewer-attractive-and-distinctive-colormaps

Although this is an intuitive way to define f̃(k)(s
(i)), it can be extended such that we can obtain the

f̃(k) for all m images in a stack s with a single operation, which can be seen in Eq. (15).

f̃(k)(s) =

s(1) 1

s(2) 1
...

...
s(m) 1

θ
(1)
(k)

θ
(2)
(k)

...
θ
(n)
(k)

ν(k)

= Ax∗

(k) (15)

4.1 Training and Testing
We start by finding the values of each f̃(k)(train_im) using Eq. (15). We also note that because f̂M is a
function of each Boolean classifier’s results, the performance metrics of these classifiers can often be a use-
ful tool when analyzing the performance of our multi-class classifier. Example results for f̂(0)(train_im),
including a sorted histogram of the data, confusion matrix, and a table of performance metrics are seen
in Fig. (4) and Tables I and II. Once we have obtained f̃(k)(train_im)∀ k, we can determine our final
classification for each image using Eq. (9). The confusion matrix for these results can be seen in Table III.

We then conduct the same categorization process using our least squares classifier, but this time it
is operating on the testing image set, test_im. Example results for f̂(0)(test_im), including a sorted
histogram of the data, confusion matrix, and performance metrics, are seen in Fig. (4) and Tables I and
II. Similarly formatted histograms, confusion matrices, and performance metrics for all other Boolean k
classifiers f̂(k), operating on both the training and testing image sets, are located in Appendices C, D,
and E, respectively.

Prediction

Outcome f̂(0) = 1 f̂(0) = 91 Total

y(0) = 1 5344 316 5660

y(0) = 91 579 53761 54340

All 5923 54077 60000

(a) f̂(0)(train_im)

Prediction

Outcome f̂(0) = 1 f̂(0) = 91 Total

y(0) = 1 864 41 905

y(0) = 91 116 8979 9095

All 980 9020 10000

(b) f̂(0)(test_im)

Table I: Confusion matrices for the Boolean 0 classifier operating on the training (a) and testing (b) data. See
Appendix A for more information regarding the contents of confusion matrices. Confusion matrices for other
digits can be found in Appendix D.

6

(a) f̂(0)(train_im)

(b) f̂(0)(test_im)

Figure 4: A categorized histogram of the results of the Boolean 0 classifier operating on the training (a) and
testing (b) images. For these plots, the count of each blue bin is equivalent to the percent of images in the input
data set that are labeled 0 and have an f̃(0) value within its bounds. Similarly, orange bin counts are the percent
of images in the input data set that are not labeled as 0 and have an f̃(0) value within its bounds. All images
that fall on the positive side of the f̃(0) = 0 dotted line are categorized as 0 by our Boolean 0 classifier f̂(0), while
all images on the negative side are categorized as not 0.

7

Value (%)

Metric f̂(0)(train_im) f̂(0)(test_im)

Error Rate 1.56 1.57

Sensitivity 96.74 95.47

False Alarm Rate 14.30 12.28

Specificity 98.60 98.72

Precision 87.12 88.16

Table II: Performance metrics for the Boolean 0 classifier operating on the training data, f̂(0)(train_im).
Equations for each metric can be found in a similar table in Appendix A. Performance metrics for other digits
can be found in Appendix E.

4.2 Analyzing Results
By simply looking at the confusion matrices in Table III, we can see that our classifier performed rela-
tively well. Specifically, we know this because the diagonal elements (representative of the images that
were classified correctly) of both matrices are significantly larger than the off diagonal elements (rep-
resentative of the images that were classified incorrectly). Still, we want to have a quantitative way to
characterize our classifier’s performance.

Although there are many different ways to measure accuracy for a multi-class classifier, we will use
two of the more general types of metric. The first, overall error rate, denoted Eoa, represents the likeli-
hood that our classifier makes a mistake. In other words this is the total number of errors, divided by
the sample size. The other measurements that we will use to evaluate our classifier’s accuracy are the
true label k rates, denoted L(k). These metrics can be thought of as the fraction of images labeled as
digit k that were correctly classified as digit k. The overall error rate and true label k rates our classifier
operating on both image sets can be found in Table IV.

Our classifier had an overall error rate of 13.99% and a mean true label k rate of 85.79% when
operating on the testing image set. Another aspect worth noting is that the success metrics of our
classifier are relatively similar across the two data sets. The difference in overall error rate was 0.26%,
while the maximum difference between corresponding true label k rates was 2.83%. Because our success
metrics are relatively similar across the two image sets, we conclude that our classifier is not overfit3. If
the data were overfit, we would expect the metrics associated with our testing images to be much worse
than those for the training data (larger Eoa and smaller L(k)).

3When a model has been trained on too much data, resulting in that model being highly sensitive. Akin to using a
tenth degree polynomial to fit linear data.

8

Prediction f̂M (train_im)

Digit k 0 1 2 3 4 5 6 7 8 9 Total

0 5678 2 97 40 10 160 109 55 75 67 6293

1 7 6547 267 167 99 94 73 189 492 61 7996

2 20 40 4789 176 43 28 61 37 63 19 5276

3 15 15 149 5156 6 434 0 46 226 115 6162

4 25 19 107 32 5203 105 70 159 103 374 6197

5 43 31 11 128 50 3987 91 9 221 12 4583

6 64 14 235 56 39 191 5475 2 56 4 6136

7 5 14 92 116 23 40 0 5452 21 512 6275

8 60 54 192 134 60 239 36 11 4417 38 5241

9 6 6 19 126 309 143 3 305 177 4747 5841

All 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000

(a) f̂M (train_im)

Prediction f̂M (test_im)

Digit k 0 1 2 3 4 5 6 7 8 9 Total

0 944 0 18 4 0 23 18 5 14 16 1042

1 0 1107 54 18 22 18 10 40 46 11 1326

2 1 2 812 23 6 3 10 16 11 2 886

3 2 2 25 878 1 72 0 6 30 17 1033

4 2 3 14 5 881 24 22 26 27 80 1084

5 7 1 0 17 5 659 17 0 39 1 746

6 14 5 41 9 10 24 874 1 15 1 994

7 2 1 23 25 2 14 0 885 13 75 1040

8 7 14 39 21 11 38 7 0 759 4 900

9 1 0 6 10 44 17 0 49 20 802 949

All 980 1135 1032 1010 982 892 958 1028 974 1009 10000

(b) f̂M (train_im)

Table III: Confusion matrices for the classification of training images (a) and testing images (b). All
diagonal entries, which represent the number of images correctly classified for each digit, are blue, while
the off diagonal entries are orange.

9

Value (%)

Metric f̂M (train_im) f̂M (test_im)

Overall Error Rate (Eoa) 14.25 13.99

True Label Rates (L(k)) 0 95.86 96.33

1 97.11 97.53

2 80.38 78.68

3 84.10 86.93

4 89.06 89.71

5 73.55 73.88

6 92.51 91.23

7 87.02 86.09

8 75.49 77.93

9 79.79 79.48

Table IV: Comparison of the accuracy metrics of our least squares classifier, f̂M , operating on both
the training and testing data.

References
[1] United States Postal Service, “A decade of facts and figures,” Postal Facts - U.S. Postal Service, 01-Apr-2021.

[Online]. Available: https://facts.usps.com/table-facts/.

[2] Y. LeCun, C. Cortes, and C. Burges, “The MNIST Database,” MNIST handwritten digit database. [Online].
Available: http://yann.lecun.com/exdb/mnist/.

[3] S. Boyd and L. Vandenberghe, “Chapters 13 and 14,” in Introduction to Applied Linear Algebra: Vectors,
Matrices, and Least Squares, Cambridge: Cambridge University Press, 2018, pp. 245-278 and 285–304.

10

https://facts.usps.com/table-facts/
http://yann.lecun.com/exdb/mnist/

A Table Formulations

Prediction

Outcome f̂(k) = 1 f̂(k) = 91 Total

y(k) = 1 Ntp Nfn Np∗

y(k) = 91 Nfp Ntn Nn∗

All Ntp +Nfp Nfn +Ntn N

Table V: General format of a confusion matrix for a Boolean k classifier, where k ∈ {0, 1, . . . , 9}. In this
example table, Nab is the total number of images in a set characterized by subscripts a and b. The subscript
a = t implies that the set contains images that our k classifier has correctly categorized (true classification), while
a = f means that the set contains images which have been incorrectly classified (false classification). Similarly,
b = p corresponds to a set containing images that were designated to be digit k (f̂j(k) is positive), and b = n
means that the set contains images that are marked as not the digit k (f̂j(k) is negative). Additionally, Np∗

equals the number of images that were labeled as k, Nn∗ equals the number of images that were not labeled as
k, and N is the total number of images in the relevant mnist data set.

Metric Equation

Error Rate
Nfp +Nfn

N

Sensitivity
Ntp

Np∗

False Alarm Rate
Nfp

Nn∗

Specificity
Ntp

Nn∗

Precision
Ntp

Ntp +Nfp

Table VI: Equations that define each of the performance metrics used for Boolean classifiers. See Table V for
the definition of each variable.

11

B Matlab Code

B.1 Training Script

%% Load training images
load(’mnist.mat’,’images ’,’labels ’);

%% Calculate x_star values for each digit

% Pre -process train images
train_im = pre_proc(images);
num_train = size(train_im ,1);

% Create train_s_stack
% train_s_stack is a column vector containing the pixel values of each image in the
% training data set concatenated with a [1], which will correspond to the constant
% shift of our hyperplane.
train_s_stack = [train_im , ones(num_train ,1)];

% Initialize a bunch of variables for saving stuff
% The corresponding digit k for an element in these variables is L-1, where L is the
% value of the highest dimension index.
train_p_inds = zeros(num_train ,10);
x_star = zeros (677 ,10);
train_f_tilde = zeros(num_train ,10);
train_Bconf = zeros (3,3,10);

% Take the pseudo -inverse of the pre -processed s stack matrix
train_ps_stack = pinv(train_s_stack);

% Calculate theta_star and f_tilde values for each digit
for i = 0:9

% Create and save logical array containing relevant label data
% True implies image at the corresponding index is labeled as the current digit.
train_p_inds (:,i+1) = labels == i;

% Create y
% Set all indices whose corresponding value in labels is not equal to our current
% digit to -2. All others (label = our current digit) will be set to 0. We then
% shift y so that our y matches the convention that 1 corresponds to indices
% labeled as our current digit , and -1 corresponds to indices that are not.
y = -2*~ train_p_inds (:,i+1) + 1;

% Calculate x_star
% By multiplying our pseudo -inversed s stack by the known outputs we obtain the
% x_star for our problem. Note that this can be thought of as the A matrix when
% calculating f_tilde.
x_star(:,i+1) = train_ps_stack * y;

% Visualize the coefficients in theta_star for this digit
if plotflag (2)

coef_fig = vis_coef(x_star (1:end -1,i+1) ’,i);
if saveflag (2)

exportgraphics(coef_fig ,sprintf(’plots/train/coeffs_%i.eps’,i));
end

end

% Calculate f_tilde for each image
train_f_tilde (:,i+1) = train_s_stack * x_star(:,i+1);

% Create actual positive and actual negative subsets
% These will be used for plotting and the confusion matrix.
train_p_vals = train_f_tilde(labels == i,i+1);
train_n_vals = train_f_tilde(labels ~= i,i+1);

12

% Plot histogram for this digit
if plotflag (3)

hist_fig = bin_hist(train_p_vals ,train_n_vals ,i,num_train ,8300);
if saveflag (3)

exportgraphics(hist_fig ,sprintf(’plots/train/hist_%i.eps’,i));
end

end

% Calculate confusion matrix for this sub -problem
train_Bconf (:,:,i+1) = confmat(train_p_vals ,train_n_vals);

if train_Bconf (3,3,i+1) ~= num_train
warning(’Sum of elements in confusion matrix is not number of inputs.’);

end
end

%% Save properly formatted A and b that define each hyperplane for Shalom
A = x_star (1:end -1,:) ’;
b = x_star(end ,:) ’;
save(’HP_Haimes.mat’,’A’,’b’);

%% Calculate performance metrics for each binary classification problem
[train_Ber ,train_Btp ,train_Bfp ,train_Btn ,train_Bpr] = Bconf2perf(train_Bconf);

%% Determine digit classification of training set for multi -class problem

% Find the maximum value of f_tilde for each image
% Save its value and its index , the digit classification is one less than the index.
[train_val ,train_dig] = max(train_f_tilde (: ,1:10) ,[],2);

% Calculate confusion matrix
% For each page (digit), we only look at images labeled as that digit. Then , for each
% digit , we sum the number of times that our least squares classifier labeled it that
% digit. The result is our confusion matrix , excluding the last row and column. We
% then calculate these for our final confusion matrix.
train_temp = reshape(train_p_inds ,[],1,10);
train_Mconf = reshape(sum(train_temp & train_dig (:,:) == 1:10) ,10,10);
train_Mconf = [train_Mconf sum(train_Mconf ,2)];
train_Mconf = [train_Mconf; sum(train_Mconf)];

% Calculate performance metrics
train_tli = (1 ./ train_Mconf (11 ,1:10)) .* sum(eye (10).* train_Mconf (1:10 ,1:10));
train_oer = 1 - (1 / train_Mconf (11 ,11)) * sum(eye (10).* train_Mconf (1:10 ,1:10) ,’all’);

13

B.2 Testing Script

%% Load external data
load(’mnist.mat’,’images_test ’,’labels_test ’); load(’HP_Haimes.mat’,’A’,’b’);

%% Pre -process data and set up other variables

% Reformat digit hyperplanes
x_star = [A b]’;

% Pre -process test images and create s matrix
test_im = pre_proc(images_test); test_num = size(test_im ,1);
test_s_stack = [test_im , ones(test_num ,1)];

% Initialize some storage variables
test_f_tilde = zeros(test_num ,10); test_Bconf = zeros (3,3,10);
test_p_inds = false(test_num ,10);

% Save logical arrays
test_p_inds (: ,1:10) = labels_test == 0:9;
test_n_inds = ~test_p_inds;

%% Use least squares classification model on test data
for i = 1:10

% Calculate f_tilde
test_f_tilde (:,i) = test_s_stack * x_star(:,i);

% Create actual positive and actual negative subsets
% These will be used for plotting and the confusion matrix.
test_p_vals = test_f_tilde(test_p_inds (:,i),i);
test_n_vals = test_f_tilde(test_n_inds (:,i),i);

% Calculate confusion matrix for this sub -problem
test_Bconf (:,:,i) = confmat(test_p_vals ,test_n_vals);

% Plot histogram for this digit
% This histogram is of the Boolean digit classifier operating on the testing data.
if plotflag (4)

hist_fig = bin_hist(test_p_vals ,test_n_vals ,i-1,test_num ,1350);
if saveflag (4)

exportgraphics(hist_fig ,sprintf(’plots/test/testhist_%i.eps’,i-1));
end

end
end

%% Calculate performance metrics for each binary classification problem
[test_Ber ,test_Btp ,test_Bfp ,test_Btn ,test_Bpr] = Bconf2perf(test_Bconf);

% Find the maximum value of f_tilde for each image
% Save its value and its index , the digit classification is one less than the index.
[test_val ,test_dig] = max(test_f_tilde (: ,1:10) ,[],2);

% Calculate confusion matrix
% For each page (digit), we only look at images labeled as that digit. Then , for each
% digit , we sum the number of times that our least squares classifier labeled it that
% digit. The result is our confusion matrix , excluding the last row and column. We
% then calculate these for our final confusion matrix.
test_temp = reshape(test_p_inds ,[] ,1 ,10);
test_Mconf = reshape(sum(test_temp (: ,: ,1:10) & test_dig (:,:) == 1:10) ,10,10);
test_Mconf = [test_Mconf sum(test_Mconf ,2)];
test_Mconf = [test_Mconf; sum(test_Mconf)];

% Calculate performance metrics
test_tli = (1 ./ test_Mconf (11 ,1:10)) .* sum(eye (10) .* test_Mconf (1:10 ,1:10));
test_oer = 1 - (1 / test_Mconf (11 ,11)) * sum(eye (10) .* test_Mconf (1:10 ,1:10) ,’all’);

14

B.3 Pre-processing function

function imgs = pre_proc(imgs)
%PRE_PROC pre -processing images
% Function to get input images into the desired form for the least squares machine
% learning problem. This involves changing the data type to double , dividing by 255,
% and removing the "border" pixels of each image.

% Check and save size of input
% Input should have each image as a single row in a matrix. That matrix should be X by
% Y, where X is the number of input images , and Y is the total number of pixels in an
% image. Because the images are square , the square root of Y will be a natural number.
n = sqrt(size(imgs ,2));
if n ~= floor(n)

error(’Input images should be a row representation of a square matrix.’);
end
X = size(imgs ,1);

% Create mask for input matrix
% We want to remove all "border" pixels from this data. We have already determined the
% indices of the elements to remove , so we create a mask in which ones will be
% removed , and zeros will remain.
mask = zeros(1,n^2); % initialize
mask(1:n) = 1; % left
mask((n+1):n:(n*(n-1)+1)) = 1; % top
mask(n:n:(n*n)) = 1; % bottom
mask((n*(n-1)+1):(n^2)) = 1; % right
mask = repmat(mask ,size(imgs ,1) ,1); % stack rows X times

% Convert image values to double and normalize
% Because the input has values from [0,255], we divide the whole thing by 255 in order
% to obtain only values between [0,1]. We also transpose the input , so that each
% column is a different image , because of the way linear indices are defined.
imgs = double(imgs)’ / 255;

% Use the mask and reshape output
% Logical indexing allows us to remove all undesired indices from the input matrix in
% one operation , but the output is a one dimensional array. Using the reshape function
% and knowledge of the output geometry we reconstruct our masked images. Finally , we
% take the transpose again , so that each row is a different image.
imgs = reshape(imgs(~mask ’) ,(n-2)^2,X)’;

end

15

B.4 Coefficient visualization function

function fig = vis_coef(imgs ,labs)
%VIS_COEF visualize coefficients of each pixel
% Function to visualize images for the least squares machine learning problem.

% Check and save size of input
% Input should have each image as a single row in a matrix. That matrix should be X by
% Y, where X is the number of input images , and Y is the total number of pixels in an
% image. Because the images are square , the square root of Y will be a natural number.
n = sqrt(size(imgs ,2));
if n ~= floor(n)

error(’Input images should be a row representation of a square matrix.’);
end
X = size(imgs ,1);

% Rearrange input images into desired format for plotting
% First transpose the input so that each column represents a unique image. After that ,
% reshape each image into a square matrix. Images then stack in the 3rd dimension.
imgs = reshape(imgs ’,n,n,X);

% Save digits in string form if input
% This will be used to easily name/label the figures/plots
if exist(’labs’,’var’)

if numel(labs) == X
labs = string(labs);

else
warning(’Number of labels does not match number of images , labels ignored.’);
labs = repmat ("No Label",X,1);

end
else

labs = repmat ("No Label",X,1);
end

% Plot each coefficient matrix as an image
for i = 1:X

% Pad each image with zeros
% These are the zeros that were removed prior to our least squares classification.
% This will make all images displayed a uniform 28 by 28 pixels.
temp = [zeros (28,1) [zeros (1,26); imgs(:,:,i); zeros (1 ,26)] zeros (28 ,1)];

% Set upper and lower bounds of colorbar
% This makes the output visually understandable to a human. Without this step ,
% most of the coefficients are indistinguishable from each other. The values of .1
% and -.1 were chosen after a process of trial and error , and were informed by
% figure 14.3 of Introduction to Applied Linear Algebra by Boyd and Vandenberghe.
temp(temp < -.1) = -.1; temp(temp > .1) = .1;

% Create the figure
fig = figure(’Name’,sprintf(’Visualized Coefficients - %s’,labs(i)));

set(fig ,’Position ’ ,[2 ,200 ,500 ,475])
ax = axes(’Parent ’,fig ,’Color’,’none’,’FontName ’,’Monospaced ’,’FontWeight ’ ,...

’Bold’,’FontSize ’,11,’Visible ’,’off’,’Position ’ ,[.09 ,.09 ,.82 ,.82]);
hold(ax,’on’); coef = imagesc(temp);

% Set colormap
colormap(ax,brewermap ([],’*RdYlBu ’));
view(ax ,[90 90]); axis(ax ,’equal’);
annotation(fig ,’textbox ’ ,[.1285 .8315 .155 .055],’String ’,labs(i) ,...

’EdgeColor ’,’none’,’FontWeight ’,’Bold’,’FontSize ’,22,’FontName ’ ,...
’Monospaced ’,’VerticalAlignment ’,’middle ’,’HorizontalAlignment ’,’left’);

hold(ax,’off’);
end

end

16

B.5 Histogram plotting function

function curr_fig = bin_hist(p_vals ,n_vals ,i,n,m)
%BIN_HIST create categorized histogram
% Function to plot a categorized histogram for the results of a binary classifier

curr_fig = figure(’Name’,sprintf(’Binary Classification Results - %i’,i));
set(curr_fig ,’Position ’ ,[2 ,200 ,560 ,510])
curr_ax = axes(’Parent ’,curr_fig ,’Color ’ ,[.99 .99 .99],’FontName ’,’Monospaced ’ ,...

’FontWeight ’,’Bold’,’FontSize ’ ,10.5,’LineWidth ’ ,1);
box(curr_ax ,’on’); hold(curr_ax ,’on’);

p_hist = histogram(curr_ax ,p_vals ,’EdgeColor ’,’#0072BD’,’EdgeAlpha ’ ,.75,’BinWidth ’ ,.06);
n_hist = histogram(curr_ax ,n_vals ,’EdgeColor ’,’#D95319 ’,’EdgeAlpha ’ ,.75,’BinWidth ’ ,.06);
zeroline = plot(curr_ax ,[0 0],[0,m],’--’,’Color’ ,[.1 .1 .1],’HandleVisibility ’,’off’);

uistack(zeroline ,’bottom ’);
xlim ([-2 ,1.4]); ylim([0,m]);
curr_ax.YTickLabel = arrayfun(@(S) sprintf(’%.2f’,S) ,...

100* round(curr_ax.YTick / n,4),’UniformOutput ’ ,0);
N_xtl = numel(curr_ax.XTickLabels);

for j=1: N_xtl
if contains(curr_ax.XTickLabels{j},’.’)

curr_ax.XTickLabels{j} = ’’;
end

end

hold(curr_ax ,’off’);
curr_leg = legend(curr_ax ,{ sprintf(’Label = %i’,i),sprintf(’Label != %i’,i)},...

’Location ’,’north east’,’FontSize ’,12,’interpreter ’,’tex’,’box’,’off’);

end

B.6 Binary confusion matrix function

function conf = confmat(p_vals ,n_vals)
%CONFMAT Create a confusion matrix for a Binary classifier

% Initialize
conf = zeros (3,3);

% Populate matrix
conf (1,1) = sum(p_vals >= 0); % True positive
conf (2,1) = sum(p_vals < 0); % False positive
conf (1,2) = sum(n_vals >= 0); % False negative
conf (2,2) = sum(n_vals < 0); % True negative

% Add along both dimensions to get sums in third row/column
conf (1:2 ,3) = sum(conf (1:2 ,:) ,2);
conf (3,:) = sum(conf (:,:));

end

17

B.7 Binary accuracy metrics function

function [er ,tp ,fp,tn,pr] = Bconf2perf(conf)
%BCONF2PERF - Get performance metrics from the confusion matrix
% Output an array of the performance metrics for any number of binary classifiers
% operating on some data. Input should be a 3x3xN matrix , where N is the number of
% confusion matrices input.

% Save the number of confusion matrices input
N = size(conf ,3);

% Initialize variables as N by 1 vectors
er = zeros(N,1);
tp = zeros(N,1);
fp = zeros(N,1);
tn = zeros(N,1);
pr = zeros(N,1);

% Calculate performance metrics for each binary classification problem
er(:) = (conf(2,1,:) + conf (1,2,:)) ./ conf (3,3,:); % Error rate
tp(:) = conf (1,1,:) ./ conf (1,3,:); % Sensitivity
fp(:) = conf (2,1,:) ./ conf (1,3,:); % False alarm rate
tn(:) = conf (2,2,:) ./ conf (2,3,:); % Specificity
pr(:) = conf (1,1,:) ./ conf (3,1,:); % Precision

end

18

B.8 Handwritten digit visualization function

function vis_dig(imgs ,labs)
%VIS_DIG visualize digit images
% Function to visualize images for the least squares machine learning problem.

% Check and save size of input
% Input should have each image as a single row in a matrix. That matrix should be X by
% Y, where X is the number of input images , and Y is the total number of pixels in an
% image. Because the images are square , the sqaure root of Y will be a natural number.
n = sqrt(size(imgs ,2));
if n ~= floor(n)

error(’Input images should be a row representation of a square matrix.’);
end
X = size(imgs ,1);

% Rearrange input images into desired format for plotting
% First transpose the input so that each column represents a unique image. After that ,
% reshape each image into a square matrix. Images then stack in the 3rd dimension.
imgs = reshape(imgs ’,n,n,X);

% Save digits in string form if input
% This will be used to easily name/label the figures/plots
if exist(’labs’,’var’)

if numel(labs) == X
labs = string(labs);

else
warning(’Number of labels does not match number of images , labels ignored.’);
labs = repmat ("No Label",X,1);

end
else

labs = repmat ("No Label",X,1);
end

% Plot each input digit
for i = 1:X

% Pad each image with zeros
% These are the zeros that were removed prior to our least squares classification.
% This will make all images displayed a uniform 28 by 28 pixels.
temp = [zeros (28,1) [zeros (1,26); imgs(:,:,i); zeros (1 ,26)] zeros (28 ,1)];

% Create the figure
fig = figure(’Name’,sprintf(’Handwritten Digit - %s’,labs(i)));

set(fig ,’Position ’ ,[2 ,200 ,500 ,475])
ax = axes(’Parent ’,fig ,’Color’,’none’,’FontName ’,’Monospaced ’,’FontWeight ’ ,...

’Bold’,’FontSize ’,11,’Visible ’,’off’,’Position ’ ,[.09 ,.09 ,.82 ,.82]);
hold(ax,’on’);
dig = imagesc(temp); colormap(flipud(gray (256)));
view(ax ,[90 90]); axis(ax ,’equal’);
annotation(fig ,’textbox ’ ,[.1275 .8325 .155 .055] ,...

’String ’,labs(i),’EdgeColor ’,’none’,’FontWeight ’,’Bold’,’FontSize ’ ,20,...
’FontName ’,’Monospaced ’,’VerticalAlignment ’,’middle ’ ,...
’HorizontalAlignment ’,’left’);

hold(ax,’off’);
end

end

19

C Histograms

C.1 Training

Figure 5: Categorized histogram of the results of the Boolean k classifiers (k ∈ {1, 2, . . . , 9}}) operating
on the training images, f̂(k)(train_im). The value of k for each graph can be seen in the legend in the
northeast of each plot. The count of each blue bin is equivalent to the percent of images in the training
data set that are labeled k and have an f̃j(k) value within its bounds. Similarly, the orange bin count is
the percent of images in the training data set that are not labeled k and have an f̃j(k) value within its
bounds. All images that fall on the positive side of the f̃(k) = 0 dotted line are categorized as k, while
all images on the negative side are categorized as not k. All histograms in this figure use the same bin
width of 0.06.

20

Figure 5 (cont.)

21

C.2 Testing

Figure 6: Categorized histogram of the results of the Boolean k classifiers (k ∈ {1, 2, . . . , 9}}) operating
on the testing images, f̂(k)(test_im). The format of each histogram in this figure is almost identical to
the format of the histograms in Fig. (5), the one difference being that the maximum percent bound has
been reduced by a small amount.

22

Figure 6 (cont.)

23

D Confusion Matrices

Prediction

Outcome f̂(1) = 1 f̂(1) = 91 Total

y(1) = 1 6133 532 6665

y(1) = 91 609 52726 53335

All 6742 53258 60000

(a) f̂(1)(train_im)

Prediction

Outcome f̂(1) = 1 f̂(1) = 91 Total

y(1) = 1 1035 67 1102

y(1) = 91 100 8798 8898

All 1135 8865 10000

(b) f̂(1)(test_im)

Table VII: Confusion matrices for the Boolean 1 classifier operating on the training (a) and testing (b) data.

Prediction

Outcome f̂(2) = 1 f̂(2) = 91 Total

y(2) = 1 3927 236 4163

y(2) = 91 2031 53806 55837

All 5958 54042 60000

(a) f̂(2)(train_im)

Prediction

Outcome f̂(2) = 1 f̂(2) = 91 Total

y(2) = 1 644 28 672

y(2) = 91 388 8940 9328

All 1032 8968 10000

(b) f̂(2)(test_im)

Table VIII: Confusion matrices for the Boolean 2 classifier operating on the training (a) and testing (b) data.

Prediction

Outcome f̂(3) = 1 f̂(3) = 91 Total

y(3) = 1 3837 242 4079

y(3) = 91 2294 53627 55921

All 6131 53869 60000

(a) f̂(3)(train_im)

Prediction

Outcome f̂(3) = 1 f̂(3) = 91 Total

y(3) = 1 655 43 698

y(3) = 91 355 8947 9302

All 1010 8990 10000

(b) f̂(3)(test_im)

Table IX: Confusion matrices for the Boolean 3 classifier operating on the training (a) and testing (b) data.

24

Prediction

Outcome f̂(4) = 1 f̂(4) = 91 Total

y(4) = 1 4033 219 4252

y(4) = 91 1809 53939 55748

All 5842 54158 60000

(a) f̂(4)(train_im)

Prediction

Outcome f̂(4) = 1 f̂(4) = 91 Total

y(4) = 1 685 36 721

y(4) = 91 297 8982 9279

All 982 9018 10000

(b) f̂(4)(test_im)

Table X: Confusion matrices for the Boolean 4 classifier operating on the training (a) and testing (b) data.

Prediction

Outcome f̂(5) = 1 f̂(5) = 91 Total

y(5) = 1 2387 303 2690

y(5) = 91 3034 54276 57310

All 5421 54579 60000

(a) f̂(5)(train_im)

Prediction

Outcome f̂(5) = 1 f̂(5) = 91 Total

y(5) = 1 416 55 471

y(5) = 91 476 9053 9529

All 892 9108 10000

(b) f̂(5)(test_im)

Table XI: Confusion matrices for the Boolean 5 classifier operating on the training (a) and testing (b) data.

Prediction

Outcome f̂(6) = 1 f̂(6) = 91 Total

y(6) = 1 4959 345 5304

y(6) = 91 959 53737 54696

All 5918 54082 60000

(a) f̂(6)(train_im)

Prediction

Outcome f̂(6) = 1 f̂(6) = 91 Total

y(6) = 1 772 74 846

y(6) = 91 186 8968 9154

All 958 9042 10000

(b) f̂(6)(test_im)

Table XII: Confusion matrices for the Boolean 6 classifier operating on the training (a) and testing (b) data.

Prediction

Outcome f̂(7) = 1 f̂(7) = 91 Total

y(7) = 1 4558 323 4881

y(7) = 91 1707 53412 55119

All 6265 53735 60000

(a) f̂(7)(train_im)

Prediction

Outcome f̂(7) = 1 f̂(7) = 91 Total

y(7) = 1 734 62 796

y(7) = 91 294 8910 9204

All 1028 8972 10000

(b) f̂(7)(test_im)

Table XIII: Confusion matrices for the Boolean 7 classifier operating on the training (a) and testing (b) data.

25

Prediction

Outcome f̂(8) = 1 f̂(8) = 91 Total

y(8) = 1 2994 220 3214

y(8) = 91 2857 53929 56786

All 5851 54149 60000

(a) f̂(8)(train_im)

Prediction

Outcome f̂(8) = 1 f̂(8) = 91 Total

y(8) = 1 502 42 544

y(8) = 91 472 8984 9456

All 974 9026 10000

(b) f̂(8)(test_im)

Table XIV: Confusion matrices for the Boolean 8 classifier operating on the training (a) and testing (b) data.

Prediction

Outcome f̂(9) = 1 f̂(9) = 91 Total

y(9) = 1 3088 484 3572

y(9) = 91 2861 53567 56428

All 5949 54051 60000

(a) f̂(9)(train_im)

Prediction

Outcome f̂(9) = 1 f̂(9) = 91 Total

y(9) = 1 562 67 629

y(9) = 91 447 8924 9371

All 1009 8991 10000

(b) f̂(9)(test_im)

Table XV: Confusion matrices for the Boolean 9 classifier operating on the training (a) and testing (b) data.

26

E Performance Metrics

Value (%)

Metric 0 1 2 3 4 5 6 7 8 9

Error Rate 1.56 1.90 3.78 4.23 3.38 5.56 2.17 3.38 5.13 5.58

Sensitivity 96.74 92.02 94.33 94.07 94.85 88.74 93.50 93.38 93.15 86.45

False Alarm Rate 14.30 9.14 48.79 56.24 42.54 112.79 18.08 34.97 88.89 80.10

Specificity 98.60 98.86 96.36 95.90 96.76 94.71 98.25 96.90 94.97 94.93

Precision 87.12 90.97 65.91 62.58 69.03 44.03 83.80 72.75 51.17 51.91

(a) f̂(k)(train_im)

Value (%)

Metric 0 1 2 3 4 5 6 7 8 9

Error Rate 1.57 1.67 4.16 3.98 3.33 5.31 2.60 3.56 5.14 5.14

Sensitivity 95.47 93.92 95.83 93.84 95.01 88.32 91.25 92.21 92.28 89.35

False Alarm Rate 12.82 9.07 57.74 50.86 41.19 101.06 21.99 36.93 86.76 71.07

Specificity 98.72 98.88 95.84 96.18 96.80 95.00 97.97 96.81 95.01 95.23

Precision 88.16 91.19 62.40 64.85 69.76 46.64 80.58 71.40 51.54 55.70

(b) f̂(k)(test_im)

Table XVI: Performance metrics for each Boolean digit classifiers operating on training (a) and testing (b)
data.

27

	Introduction
	Pre-Processing
	The Data
	Exploring Index Relations

	Formulating the Least Squares Problem
	Understanding Multi-Class Classifiers
	Building the Binary Classifiers

	Classifying the Data
	Training and Testing
	Analyzing Results

	References
	Table Formulations
	Matlab Code
	Training Script
	Testing Script
	Pre-processing function
	Coefficient visualization function
	Histogram plotting function
	Binary confusion matrix function
	Binary accuracy metrics function
	Handwritten digit visualization function

	Histograms
	Training
	Testing

	Confusion Matrices
	Performance Metrics

