
MCEN 5125: Optimal Design

Optimal Truss Topology
Jacob Haimes

1 Introduction
For a vast majority of history, the question "what is the best geometry with which to build a structure
or object?" has been answered with human intuition. Over approximately the last 150 years [1] an
alternative method has been developed called topology optimization. This process allows us to know
the optimal layout of material for a specific loading case and boundary conditions. Although many
structures and objects have multiple relevant loading conditions, topology optimization can be used to
inform our designs and make them far more efficient than our human intuition can.

One method of topology optimization is linear programming. This method optimizes a linear function
subject to any number of both equality and inequality constraints. The general form for a linear program
(LP) is described in detail in §3.2. In this report, we will explore a simplified version of a truss topology
optimization problem, and determine a solution using an LP. The problem is defined in §2, while the
formulation of our linear program is discussed in §3. Our solutions generated using said LP are then
presented in §4, with closing remarks following in §5.

2 Problem Definition
For this problem, our overarching goal is to design an optimal truss (for a given loading case) within the
design constraints provided using linear programming. Specifically, the nodes of this truss must exist
only at integer coordinates on an 11 × 20 unit grid. Each of these coordinates can be thought of as an
index in a two-dimensional matrix. Using the same conventions as Matlab, the node in the upper right
corner of the grid is at position (1, 1), and the node in the lower right corner is at (11, 20). This results
in a total of n = 220 nodes. We choose to designate each node N \

r,c by its two dimensional index in the
aforementioned matrix. Linear indexing can then be used to create a one dimensional vector N(220×1)

that is analogous to N \
(11×20)

Functions for transforming between a two dimensional array P \(U×V) and a one dimensional array
P(U∗V×1) can be seen in Eq. (1) and Eq. (2). The Matlab functions ind2sub and sub2ind will also
accomplish this task.

H : P \u,v −→ Pw

where H(u, v) = w = U(v − 1) + u (1)

H91 : Pw −→ P \u,v

where H91(w) = (u, v) =

(
(w − 1 (mod U)) + 1,

⌊
w − 1

U

⌋
+ 1

)
(2)

Our truss is made up of beams that connect two nodes in our design grid. The beam connecting
nodes Nα and Nβ is designated beam B\α,β . A B\ matrix that contains all of the possible beams in this
problem would then have dimensions 220×220, but only elements above the diagonal would be necessary
to describe all beams, as B\α,β = B\β,α, and beams must connect two different nodes. An example of such
a B\ matrix is seen in Eq. (3).

B\ =



0 B\1,2 B\1,3 · · · B\1,220

0 B\2,3 · · · B\2,220
.

...
. . . B\119,220

0 0


(3)

1

1 5 9 13 17 21

1

3

5

7

9

11

Figure 1: A visualization of the design space that we are working in, including the nodes that are
supported, and the force that the truss will be subjected to.

The total number of possible beams is then

m =

n−1∑
i=1

i =
219(220)

2
= 24 090.

We will also specify that all beams will have uniform cross sectional area Across = 1, and will be com-
posed of a material that has a yield strength σy = 8 in both tension an compression.

Within the grid there are three nodes that are anchored at positions (5, 1), (6, 1), and (7, 1). The
truss will be subjected to a force of F = 4 directed vertically downward at node N \

6,20. A visualization
of this design grid can be seen in Fig. (1). To qualify as a solution, the truss must be attached to N \

6,20,
and be able to maintain static equilibrium without breaking when the force is applied. Any change in
strain within the beams is considered negligible, and thus will be ignored.

The two ways in which our truss will be optimal can be thought of as minimum weight and minimum
weight considering feasibility/cost. For clarity, we designate these as problems 1○ and 2○, respectively.
The difference between these two trusses will be that we penalize longer beams in 2○. The optimization
equations that we will be using are developed in §3.4.3.

3 Formulation

3.1 Efficient Beam Representation
At this point, we have defined almost all relevant variables as some constant value. The only remaining
choices that we have are which of the m = 24 090 beams we will use in our final design. Because the
elements of our B\ matrix that are on or below the diagonal are always zero, we can use a modified form
of linear indexing to represent B\ (or any property that individual beams have) as a much smaller one

2

dimensional vector without losing any information. Eq. (4) and Eq. (5) map between the upper triangular
two dimensional array P \(U×U) and the one dimensional array P(`×1), where ` = 1

2U(U − 1). Note that
in Eq. (5) the expression used to find u utilizes the value obtained for v.

Hut : P \u,v −→ Pw

where Hut(u, v) = w =
(v − 1)(v − 2)

2
+ u (4)

H91
ut : Pw −→ P \u,v

where H91
ut (w) = (u, v) =

(
w − 1

2 (v − 1)(v − 2),

⌈
1
2

(
1 +
√

8w + 1
) ⌉)

(5)

With this mapping established, a beam connecting nodes Nα and Nβ can be expressed in two equivalent
ways: B\α,β and Bj , where j = Hut(α, β).

3.2 General Form for Linear Programming
Because we wish to solve our problem through linear programming, we first define what the general form
for an LP:

minimize ĴT ẑ (6)

subject to Âẑ ≤ b̂ (7)

Âeqẑ = b̂eq (8)

where ẑ ∈ Rη is a column vector of the η variables, Ĵ ∈ Rη contains the coefficients of the cost function
that we are trying to minimize, Â ∈ Rµ×η is the µ constraint inequalities with b̂ ∈ Rµ representing
the corresponding inequality constants, and Âeq ∈ Rρ×η is the ρ constraint equations with b̂eq ∈ Rρ

representing the corresponding inequality constants. Often, Eq. (6), Eq. (7), and Eq. (8) are called the
minimization function, inequality constraints, and equality constraints, respectively.

When we look at this problem, we quickly recognize that it is sufficiently large such that it would
be practically impossible to solve by hand. There are, however, many well documented ways that LP
problems can be solved using the assistance of a computer, once they are written in this general form.
Consequently, our goal will be to identify a pattern that characterizes the general form LP, use that to
build the general form for our specific large problem, and then use Matlab’s linprog function to find
its solution.

3.3 Building Tables of Known Constants
Prior to writing our problem in general form, we will create look-up tables for values that will be used
when formulating our problem. The vector l(m×1) contains the length of each beam, while the vectors
C(m×1) and S(m×1) contain the cosine and sine of the angle between the horizontal at node Nα and the
beam B\α,β ∀ {α, β | α < β} (upper right triangle of the B\ matrix).

3.3.1 Beam Length

If our goal is to calculate the length of beam Bj , we must first determine the indices of the two nodes
Nα, and Nβ that the beam spans between. This is achieved through the use of Eq. (5).

(α, β) = H91
ut (j)

3

We then determine the locations of both nodes Nα and Nβ in our grid using Eq. (2). Because we will be
using these row-column positions at least twice, we make sure to save the vectors r(N) and c(N). The
distance formula can then be used to find lj , which is given in Eq. (9).(

rα, cα

)
= H91(Nα)(

rβ , cβ

)
= H91(Nβ)

lj =

√(
cβ − cα

)2
+
(
rβ − rα

)2
(9)

3.3.2 Angle Between Nodes

The most intuitive way to store cosine and sine information for our problem would be to create both
C\(n×n) and S\(n×n), where the row index corresponds to the starting node Nα, and the column index
corresponds to terminal node Nβ , similar to how we constructed the two-dimensional beam matrix B\.
Prior to populating the table, we actually already know a couple things about the entries due to the
geometry of the design space and the ordering that we chose for our nodes. First, we know that all
elements on the diagonal of both C\ and S\ will be irrelevant, as these entries correspond to cases where
α = β, but a beam B\α,β must connect two unique nodes. As a result, we will set the diagonals to
zero. Additionally, we know that elements in the upper right triangle of C\ will be in the range [0, 1],
and elements in the same region of S\ will be in the range [−1, 1]. Although C and S do not contain
entries corresponding to the angle between the horizontal at node Nβ to the beam B\α,β , these values
will be equivalent to the negative of the corresponding element in the upper right portion of the matrix.
Mathematically this is written

ℵ\α,β = 9ℵ\β,α, (10)

where ℵ\ is either C\ or S\. This realization allows us to store our cosine and sine information in a m×1
vector, instead of a two dimensional matrix, if we follow the rule stated in Eq. (11).

ℵ\α,β =


0, α = β

ℵHut(α,β), α < β

9ℵHut(α,β), α > β

(11)

Both C(m×1) and S(m×1) are then populated using Eq. (13) and Eq. (14), respectively.

θα,β = tan

(
rβ − rα
cβ − cα

)
(12)

Cj = arccos (θα,β) (13)

Sj = arcsin (θα,β) (14)

3.4 A Smaller Problem in General Form
Due to the size of this problem, we will use a smaller version initially. A diagram of this smaller design
grid can be seen in Fig. (3). In this problem, we have n = 6 nodes and m = 15 possible beams.
Additionally, the anchored nodes are N \

1,1 = N1 and N \
2,1 = N2, and the node subjected to the force is

node N \
2,3 = N6. We have "constructed" our l, C, and S look up tables, which are seen in Eq. (15).

l =


l1

l2
...
l15

 , C =


C1

C2

...
C15

 , S =


S1

S2

...
S15

 (15)

4

lj

1

θ\α,β
S\α,β

C\
α,β

Bj

Nα

Nβ

Figure 2: Diagram portraying θ\α,β , which is described as the angle between the horizontal at node Nα
and beam Bj , which connects Nα to Nβ . The cosine and sine of θα,β are also visualized with C\α,β and
S\α,β , respectively.

1 2 3

1

2

Figure 3: A visualization of the smaller design space, including the nodes that are supported, and the
force that the truss will be subjected to.

3.4.1 "Hold the Load" Constraint

To guarantee that this truss is capable of holding the load applied, we want to mandate that the truss
be in static equilibrium. To satisfy this, we know that the sum of forces at each non-anchored node must
be equal to zero. Because we will be dealing with equalities, we know that we are currently working on
building Eq. (8).

Although we could immediately ignore the anchored nodes, making our problem slightly smaller, we
choose to include them for now as they may help us identify a pattern. Later, we can choose to either
remove the rows that correspond to our anchored nodes, or we can add columns for our reaction forces.
We begin by defining a vector f(m×1), which will contain the force information for each beam. Recall
that f(m×1) has an equivalent two dimensional matrix f \(n×n).

Now we write out the force equilibrium equation at each node in order to identify a pattern in Eq. (17).

5

To reduce clutter, we also define Φα,β in Eq. (16).

Φα,β =

[
C\α,β
S\α,β

]
(16)

f \1,2Φ1,2 + f \1,3Φ1,3 + f \1,4Φ1,4 + f \1,5Φ1,5 + f \1,6Φ1,6 (+R1) = 0(2×1)

f \2,1Φ2,1 + f \2,3Φ2,3 + f \2,4Φ2,4 + f \2,5Φ2,5 + f \2,6Φ2,6 (+R2) = 0(2×1)

f \3,1Φ3,1 + f \3,2Φ3,2 + f \3,4Φ3,4 + f \3,5Φ3,5 + f \3,6Φ3,6 = 0(2×1)

f \4,1Φ4,1 + f \4,2Φ4,2 + f \4,3Φ4,3 + f \4,5Φ4,5 + f \4,6Φ4,6 = 0(2×1)

f \5,1Φ5,1 + f \5,2Φ5,2 + f \5,3Φ5,3 + f \5,4Φ5,4 + f \5,6Φ5,6 = 0(2×1)

f \6,1Φ6,1 + f \6,2Φ6,2 + f \6,3Φ6,3 + f \6,4Φ6,4 + f \6,5Φ6,5 (+ F) = 0(2×1)

(17)

If reaction forces R1 and R2 are ignored, this looks very similar to our cosine and sine matrices, C\
and S\. We also realize that any process we create to determine the force in one dimension will be
easily applied to the other. As a result, we will work only in the x dimension for now. The horizontal
components of Eq. (17) are now rewritten, meaning that we use C instead of Φ. This time, indices of the
one dimensional f are used instead of the indices of f \, and the reaction forces R1 and R2 are ignored,
as they won’t contribute to pattern identification.

f1C
\
1,2 + f2C

\
1,3 + f4C

\
1,4 + f7C

\
1,5 + f11C

\
1,6 = 0

f1C
\
2,1 + f3C

\
2,3 + f5C

\
2,4 + f8C

\
2,5 + f12C

\
2,6 = 0

f2C
\
3,1 + f3C

\
3,2 + f6C

\
3,4 + f9C

\
3,5 + f13C

\
3,6 = 0

f4C
\
4,1 + f5C

\
4,2 + f6C

\
4,3 + f10C

\
4,5 + f14C

\
4,6 = 0

f7C
\
5,1 + f8C

\
5,2 + f9C

\
5,3 + f10C

\
5,4 + f15C

\
5,6 = 0

f11C
\
6,1 + f12C

\
6,2 + f13C

\
6,3 + f14C

\
6,4 + f15C

\
6,5 = 9Fx

(18)

We know that f is of the form

f =


f1

f2
...
f15

 , (19)

meaning that we can replicate the left hand side of Eq. (18) by choosing a vector aTi strategically, and
using the operation aTi x for each row i.

aT1 =
[
C\1,2 C\1,3 0 C\1,4 0 0 C\1,5 0 0 0 C\1,6 0 0 0 0

]
aT2 =

[
C\2,1 0 C\2,3 0 C\2,4 0 0 C\2,5 0 0 0 C\2,6 0 0 0

]
aT3 =

[
0 C\3,1 C\3,2 0 0 C\3,4 0 0 C\3,5 0 0 0 C\3,6 0 0

]
aT4 =

[
0 0 0 C\4,1 C\4,2 C\4,3 0 0 0 C\4,5 0 0 0 C\4,6 0

]
aT5 =

[
0 0 0 0 0 0 C\5,1 C\5,2 C\5,3 C\5,4 0 0 0 0 C\5,6

]
aT6 =

[
0 0 0 0 0 0 0 0 0 0 C\6,1 C\6,2 C\6,3 C\6,4 C\6,5

]
(20)

6

We begin to see that there are two patterns that can be combined to create the Aeq matrix that we
will need for our LP problem. We first look at the pattern of diagonals that are increasing in length.
This pattern reminds us of the diag function, which takes the elements of a vector of length k and inserts
them as the diagonal in a square k × k matrix. Using this function, the upper right portion of the aTi
stack, which we denote ACup, is seen in Eq. (21).

ACup(6×15) =



diag(C1) diag(C2:3) diag(C4:6) diag(C7:10) diag(C11:15)
05×1

04×2
03×3

02×4
01×5


(21)

The lower left portion is denoted AClo. Notice that in Eq. (20), the C\ indices in this are explicitly not
in the corresponding one dimensional C vector, as this row index α is greater than the column index β.
We take advantage of Eq. (10) to construct Eq. (22).

AClo(6×15) =



0(1×15)

9C1 0(1×14)

0(4×1)

9C2:3 0(1×12)

0(3×2)

9C4:6 0(1×9)

0(2×3)
9C7:10 0(1×5)

0(1×4) 9C11:15


(22)

The coefficients in our equality constraints, Aeq, are then expressed as the sum of these two matrices,
while the constants are simply the right hand side of Eq. (18). The variables present in the constraint
equations are in z. We do not yet designate Âeq, b̂eq, or ẑ though, as we may need to pad our arrays in
order to maintain compatibility with our cost function.

Before we write our equality constraints in general form, we recall that we have ignored our reaction
forces R1 and R2. We recognize that we can add four more columns, two of which will correspond to the
horizontal components of the reaction forces, while the others correspond to the vertical components.
This also requires that we add four more rows to our variable vector. These rows and columns can be
seen in Eq. (23). The remaining piece of given information, F , is included in the constants vector beq.

zR(4×1) =


R1,x

R2,x

R1,y

R2,y

 , AR(12×4) =


1 0

0(6×2)0 1

0(10×2)

1 0
0 1
0(4×2)

 (23)

(1)R1,x + (0)R2,x + (2)R1,y + (2)R2,y = 0 (24)

Finally, we concatenate our matrices appropriately to arrive at Eq. (25).

zeq(19×1) =

[
f

zR

]
, Aeq(12×19) =

[
ACup +AClo

AR
ASup +ASlo

]
, beq(12×1) =


0(5×1)

9Fx
0(5×1)

9Fy

 (25)

7

3.4.2 "Don’t Break" Constraint

Before constructing these constraints, we hark back to our days in a thoroughly riveting lecture regarding
material properties that we all assuredly had. Among many other things, we learned that the stress in
an object is given by

σ =

#‰

F

Across
, (26)

and that the maximum stress that a material can take before permanently changing its shape is yield
strength σy. The "don’t break" constraint in this problem means that the stress |σj | ≤ 8 in any beam
Bj . For this problem, we also assume that strain is negligible, that the beam material is even1, and that
this material exhibits no elastic deformation2.

Because the cross sectional area of our beams was provided as Across = 1, we see that σ = f . When
f is then substituted into our inequality we get

|f | ≤ 8 ∗ 1(15×1) =⇒

{
f ≤ 8 ∗ 1(15×1)

9f ≤ 8 ∗ 1(15×1)
(27)

Eq. (27) then leads us to the A and b in Eq. (28).

A =

[
I15

9I15

]
, b = 8 ∗ 1(30×1) (28)

3.4.3 Minimization Function

The next piece in our problem formulation puzzle is determining the components of the cost function,
JT and z. We cannot lose sight of our goals during this process, of which we have two. The first is
to obtain a minimum weight solution to this problem. Because all of our beams have the same Across
and are made of the same material, 1○ is analogous to minimum length. Our distances are predefined,
suggesting that we can’t minimize the length of the beams. Although we can’t change individual beam
lengths, we can minimize the one-norm of the internal beam forces, meaning that our first minimization
function will be

JT1 z1 = ‖f‖1. (29)

The idea here is that as more beams are used in the design, this value will increase. At the same time,
long unsupported beams will be difficult to manufacture, ship, and work with, so it would also make sense
to create a minimization function that addresses this concern. Our solution to 2○ will be to minimize
the length weighted sum of the internal beam forces, leading to our second minimization function,

JT2 z2 = ‖l � f‖1 = l � ‖f‖1. (30)

In Eq. (30), we use the � operator to signify element-wise multiplication. With these functions defined,
we now attempt to build the general form of both problems without considering their constraints. Let’s
examine the LP for 1○.

‖f‖1 = |f1|+ |f2|+ · · ·+ |f15|

= max
{
f1, 9f1

}
+ max

{
f2, 9f2

}
+ · · ·+ max

{
f15, 9f15

}
(31)

1A material that is even has a compressive yield strength that is equivalent to its tensile yield strength
2Elastic deformation occurs when an object changes shape due to a load, and it would return to its original shape if

that load were removed.

8

This pattern can be succinctly expressed with an auxiliary variable:

tj = max
{
fj , 9fj

}
. (32)

Furthermore, the entire minimization function can be written

15∑
j=1

tj . (33)

The minimization function can now be expressed in general form, where

J1 =

[
0(15×1)

1(15×1)

]
, z1 =

[
f(15×1)

t(15×1)

]
, A1 =

[
I15 9I15

9I15 9I15

]
, and b1 = 0(30×1). (34)

LP 2○ uses the same auxiliary variable, but we modify J slightly so that our cost function looks like
Eq. (35).

l‖f‖1 = l1|f1|+ l2|f2|+ · · ·+ l15|f15| (35)

We then can write this LP in general form (ignoring other constraints), where

J2 =

[
0(15×1)

l(15×1)

]
, z2 =

[
f(15×1)

t(15×1)

]
, A2 =

[
I15 9I15

9I15 9I15

]
, and b2 = 0(30×1). (36)

3.4.4 Unifying the Sub-Problems

We now have a general form representation of both constraints and the minimization function, which can
be seen in Eqs. (25), (28), (34), and (36). Our next step, then, is to synthesize these separate equations
into our final general form LP problem.

ẑ =

 f(15×1)

t(15×1)

zR(4×1)

 , Ĵ1 =

 0(15×1)

1(15×1)

0(4×1)

 , Ĵ2 =

 0(15×1)

l(15×1)

0(4×1)

 ,

Â =


I15 9I15

0(60×4)
9I15 9I15

I15 0(30×15)
9I15

 , b̂ =

[
0(30×1)

8 ∗ 1(30×1)

]
,

Âeq =

[
ACup +AClo 0(12×15) AR
ASup +ASlo

]
, b̂eq =


0(5×1)

9Fx
0(5×1)

9Fy

 (37)

3.5 Expanding to an Arbitrarily Sized Design Grid
Now that we have formulated this smaller problem, it is much easier to wrap our heads around the
larger problem that we have set out to solve. To make our framework usable for any set of loading and
anchoring conditions, we define a general form for an arbitrarily sized grid of nodes in which there are
no applied forces, and no nodes are anchored. Although this is useless as a standalone finding, we will
also define what must be added to this form to create any possible loading and anchoring conditions.
Here, n represents the total number of nodes in the grid and m represents the total number of possible

9

beams that can be created in the grid. We first define a few other variables that will help us build the
final matrices required for our problem formulation. Note that in Eq. (39) the bottom left corner of the
ith diagonal is on row i.

ξi =

(
i

2

)
+ 1

ζi = ξ − 1 + i

 for row index i ∈ [2 : n] (38)

Aℵup(n×m) =



diag(ℵ1)
diag(ℵ2:3)

diag(ℵ4:6)
. . .

diag(ℵξi:ζi)
. . .

0 diag(ℵm−n+1:m)
0(1×m)


(39)

Aℵlo(n×m) =



0(1×m)

9ℵ1 0

9ℵ2:3
9ℵ4:6

. . .
9ℵξi−1:ζi−1

. . .
0 9ℵm−n+1:m


(40)

zgen =

[
f(m×1)

t(m×1)

]
, J1,gen =

[
0(m×1)

1(m×1)

]
, J2,gen =

[
0(m×1)

l(m×1)

]
,

Agen =


Im 9Im

9Im 9Im
Im 0(2m×m)

9Im

 , bgen =

[
0(2m×1)

8 ∗ 1(2m×1)

]
,

Aeq,gen =

[
ACup +AClo 0(2n×m)
ASup +ASlo

]
, beq,gen =

[
0(2n×1)

]
(41)

With the framework established, we now add the loading conditions and anchor node reaction forces.
Note that the variable δ represents the number of anchor nodes in the problem.

10

For each anchor node Ni :

zgen =

 zgen

Rϕ,x

Rϕ,y

 (42)

J1,gen =

[
J1,gen

0(2,1)

]
(43)

J2,gen =

[
J2,gen

0(2,1)

]
(44)

Agen =
[
Agen 0(4m×2δ)

]
(45)

ARi
=



01×i−1

01×n+i−1

1

01×2n−i

1

01×n−i


(46)

Once the above process has been completed for all anchor nodes, we create the matrix AR by concate-
nating all ARi

horizontally. AR is then horizontally concatenated with Aeq,gen. Finally, for each node
that is subjected to a force Fi, we set the value of beq at index i to equal 9Fi,x, and the value at index
n+ i to equal 9Fi,y.

4 Solution
The process described in §3 is then implemented in Matlab, which can be seen in Appendix A. It is
worth noting that our final Â, the largest matrix that we use in this problem, will have dimensions of
4m× (2m+ 2δ) = 96 360× 48 186, resulting in more than 4.6× 109 elements. If we construct these large
matrices normally, the process will take a rather long time, and we are likely going to be limited by our
computer’s memory. Because the large matrices in this problem, including Â, are sparse3, they are more
efficiently stored as a sparse matrix 4. Although we have attempted to reduce the size of this problem,
the linprog function takes approximately 89.8 s to find the optimal solution for 1○, and approximately
297.4 s to find the optimal solution for 2○. The code used to set up and execute these LPs can be viewed
in Appendix A.

The linprog function has now returned our optimal ẑ∗ vectors, but these data require a small amount
of post-processing before we have the solution to our problems. First, ẑ∗ contains more information than
we need, as the reaction forces and auxiliary variables are not part of our cost function. As a result,
we define a variable that contains only the force data, f∗ = ẑ∗(1 : m). There is a high likelihood that
f̂∗ will contain some entries whose force magnitude is very small. To handle this, we will set elements
in f∗ that are less than some small value to zero. Here, we have chosen for the threshold to be a force
magnitude of .001.

Plots of the design optimal trusses for both optimization problems can be seen in Fig. (4), while a
tabulated version of our solution to 1○ can be seen in Table I. The solution for 2○ is not tabulated, as

3A matrix whose elements are mostly zero.
4Matlab can store any matrix using either the traditional or sparse datatype. In sparse matrices all entries are zero,

except those noted otherwise. Each nonzero element, then, has three pieces of data attached to it: the row index, the
column index, and the element value. A product of this representation is that matrices with many more zeros than nonzeros
can be stored more efficiently in this form.

11

Bj Nα (rα, cα) Nβ (rβ , cβ) fj

22 371 5 (5, 1) 213 (4, 20) 7.913

22 373 7 (7, 1) 213 (4, 20) 98.000

22 583 5 (5, 1) 214 (5, 20) 7.956

22 585 7 (7, 1) 214 (5, 20) 98.000

22 796 5 (5, 1) 215 (6, 20) 8.000

22 798 7 (7, 1) 215 (6, 20) 98.000

23 004 213 (4, 20) 215 (6, 20) 0.832

23 005 214 (5, 20) 215 (6, 20) 0.838

23 010 5 (5, 1) 216 (7, 20) 8.000

23 012 7 (7, 1) 216 (7, 20) 97.956

23 220 215 (6, 20) 216 (7, 20) 90.838

23 225 5 (5, 1) 217 (8, 20) 6.274

23 227 7 (7, 1) 217 (8, 20) 96.205

23 435 215 (6, 20) 217 (8, 20) 90.652

Table I: Solution to LP 1○. We note that many of the beams have an internal force whose magnitude
is equivalent to the maximum allowable force: 8. A visualization of this solution can be seen in Fig. (4).

there are too many beams to gain a meaningful understanding of the truss without visualization.

For LP 1○, we have used 14 of our 24 090 potential beams, resulting in an optimal cost function
value of 79.46 and total beam length of 196.79. In this design, no beams are connected to the anchor
node N \

6,1, while the other two anchor nodes are both connected to the same 5 nodes in the column
where the force is applied. Although it is difficult to tell from Fig. (4), Table I shows us that the vertical
beams are not symmetric about row 6.

In contrast to the relatively simple design created by LP 1○, LP 2○ creates a design that would
be rather difficult to intuit. This truss uses 183 beams, and produces an optimal cost function value of
554.46 and has a total beam length of 423.34. Similarly to our other solution, this truss is not connected
to anchor node N \

6,1 at all.

When comparing these two solutions, we must remind ourselves that both are optimal in precisely
the way our cost function specified. As could be expected, our solution to 1○ has a much lower total
beam length than our solution to 2○. Two more interesting comparisons are maximum and average
beam lengths. The solution to 1○ has a maximum beam length of 19.24 and a mean beam length of
14.06, while the solution to 2○ contains no beam longer than 4.47, and has an average beam length of
2.31. If long beams are hard to come by, the latter solution would have a significant advantage.

12

1 5 9 13 17 21

1

3

5

7

9

11

-8

-4

0

4

 8

(a) Visualization of LP 1○ solution

1 5 9 13 17 21

1

3

5

7

9

11

-4

-2

0

2

 4

(b) Visualization of LP 2○ solution

Figure 4: Visualizations of the solutions to our LP problems. Beam color is a function of the internal
force that the beam is experiencing, shown on the colorbar. Tension is considered to be a force in
the positive direction, meaning that beams in tension are a shade of red, while beams in compression
are a shade of blue. A plot that is colored with the categorical classification of each beam (tension or
compression) can be seen in Appendix B.

13

Attribute 1○ 2○

Total beam length 196.79 423.34

Cost function value 79.46 554.46

Sum of force magnitudes 79.46 265.61

Number beams used 14 183

Maximum beam length 19.24 4.47

Average beam length 14.06 2.31

Solver time 89.8 297.4

Table II: Comparison of various attributes for the solutions to 1○ and 2○. We note that although 1○
has a total beam length that is about half of 2○, the average beam length used in 2○ is smaller than
one sixth the average beam length of 1○.

5 Conclusion
We recall that the goal of this report was to find the optimal truss topology for a set design space. To
be considered a viable solution, the truss must support a set applied load without breaking. In more
quantitative terms, this requirement can be expressed with two fundamental constraints: the truss must
maintain static equilibrium when the force is applied, and the stress in each beam must not exceed the
yield stress of the beam material. Furthermore, there were two distinct optimum that we wished to
identify: the topologies associated with 1○ and 2○. Finally, we were to arrive at our solution using
linear programming.

Using many tools, such as clever grid numbering, matrix linearization, and using a smaller version
of the problem we were able to construct a general form algorithm for a problems similar to the one
provided. This process was then implemented in Matlab, and solutions for both objectives were found.
Plots of our two optimal solutions can be seen in Fig. (4). For both cost functions, there is relative symme-
try about the sixth row in the design space. Table II shows a comparison between the two optimal trusses.

One potentially interesting direction to go with this project would be to attempt to construct our own
cost function that results in a compromise between solutions 1○ and 2○. Another interesting aspect to
explore would be the optimization of the algorithms for speed. I would be interested to explore potential
methods that could reduce computation time of a large LP like these.

References
[1] L. János and H. Ismail, “Milestones in the 150-Year History of Topology Optimization: A Review,” Computer

Assisted Methods in Engineering and Science, vol. 27, pp. 97–132, Sep. 2020.

14

A Matlab Code

A.1

%% Problem Specifications

% Set design grid dimensions as (row #, col #)
grid_dim = [11 ,20];

% Define anchor nodes (row #, col #)
anch = [5 1; 6 1; 7 1];

% Define forces
% Floc = (row #, col #)
% Fcom = (X force , Y force)
Floc = [6 ,20];
Fcom = [0,-4];

% Define maximum force inside beams (for both tension and compression)
Fmax = 8;

%% Save all known values
% Both individual numerical values and lookup tables

% Save number of anchor and force nodes
delta = size(anch ,1);
Fnum = size(Floc ,1);

% Calculate total number of nodes (n) and possible beams (m)
n = grid_dim (1) * grid_dim (2);
m = nchoosek(n,2);

% Calculate beam numberings for the beams connecting anchor nodes
anch_AlBe = nchoosek(sub2ind(grid_dim ,anch (:,1),anch (:,2)) ,2);
anch_B = H_ut(anch_AlBe (:,1),anch_AlBe (:,2));

% Create N
% Consists of Nr and Nc, holds the (row ,column) positions of each node
[Nc ,Nr] = meshgrid (1: grid_dim (2) ,1:grid_dim (1));
N = [reshape(Nr,n,1), reshape(Nc ,n,1)];

% Determine the nodes (Nalpha ,Nbeta) that correspond to each beam Bj
AlBe = H_ut (1:m);

% Create beam length lookup table
L = sqrt (...

(N(AlBe (:,2) ,2) - N(AlBe (:,1) ,2)).^2 ... % (cBe - cAl)^2
+ (N(AlBe (:,2) ,1) - N(AlBe (:,1) ,1)).^2 ... % (rBe - rAl)^2

);

% Create beam angle lookup table
theta = atan2 (...

(N(AlBe (:,2) ,1) - N(AlBe (:,1) ,1)), ... % (rBe - rAl)
(N(AlBe (:,2) ,2) - N(AlBe (:,1) ,2)) ... % (cBe - cAl)

);

% Create cosine and sine lookup tables
C = cos(theta);
S = sin(theta);

% Create xi and zeta lookup tables
xi = [0; arrayfun(@nchoosek ,2:n,2* ones(1,n-1))’ + 1];
zeta = xi + (1:n)’ - 1;

15

%% Define constraints and cost function
% Create upper right portion of cosine equality component matrix
ACup = zeros(n,m);
ACup (1,1) = C(1);
for i = 2:n-1

ACup (1:i,xi(i):zeta(i)) = diag(C(xi(i):zeta(i)));
end
ACup(:,anch_B) = zeros(n,delta);

% Create upper right portion of sine equality component matrix
ASup = zeros(n,m);
ASup (1,1) = S(1);
for i = 2:n-1

ASup (1:i,xi(i):zeta(i)) = diag(S(xi(i):zeta(i)));
end
ASup(:,anch_B) = zeros(n,delta);

% Create lower left portion of cosine equality component matrix
AClo = zeros(n,m);
AClo (2,1) = -C(1);
for i = 2:n-1

AClo(i+1,xi(i):zeta(i)) = -C(xi(i):zeta(i));
end
AClo(:,anch_B) = zeros(n,delta);

% Create lower left portion of sine equality component matrix
ASlo = zeros(n,m);
ASlo (2,1) = -S(1);
for i = 2:n-1

ASlo(i+1,xi(i):zeta(i)) = -S(xi(i):zeta(i));
end
ASlo(:,anch_B) = zeros(n,delta);

% Create reaction force portion of constraints
AR = spalloc (2*n,2*delta ,2* delta);
for k = 1: delta

AR(sub2ind(grid_dim ,anch(k,1),anch(k,2)) ,2*k - 1) = 1;
AR(n+sub2ind(grid_dim ,anch(k,1),anch(k,2)) ,2*k) = 1;

end

% Create equality constraint matrix and constants vector
% Add upper and lower components together for both cosine and sine.
% Concatenate the resulting matrices vertically.
Aeq = sparse ([[ACup + AClo; ASup + ASlo] zeros (2*n,m), AR]);
beq = spalloc (2*n,1,Fnum);
for k = 1:Fnum

beq(sub2ind(grid_dim ,Floc(k,1),Floc(k,2) ,1)) = Fcom(k,1);
beq(n+sub2ind(grid_dim ,Floc(k,1),Floc(k,2) ,1)) = Fcom(k,2);

end

% Create inequality constraints matrix and constants vector
A = [[speye(m) -speye(m);...

-speye(m) -speye(m);...
[speye(m); -speye(m)] spalloc (2*m,m,1)]...

spalloc (4*m,2*delta ,1)];
b = [zeros (2*m,1); Fmax*ones (2*m,1)];

% Create cost function coefficient vectors
J1 = [zeros(m,1); ones(m,1); zeros (2*delta ,1)];
J2 = [zeros(m,1); L; zeros (2*delta ,1)];

16

%% Solve LPs and visualize
% Solve minimum weight LP
[z1 ,J1val] = linprog(J1,A,b,Aeq ,beq);

% Save the beam forces
f1 = z1(1:m);
f1_avmag = mean(abs(f1(f1~=0)));

% Create struct with all necessary plotting information
P1.n = n;
P1.file = ’optTruss1.eps’;
P1.zLog = logical(z1(1:m));
P1.L = L(P1.zLog);
P1.Lsum = sum(P1.L);
P1.B = z1(P1.zLog);
P1.Buse = AlBe(P1.zLog ,:);
P1.Bnum = size(P1.Buse ,1);
P1.Aluse = N(P1.Buse (:,1) ,:);
P1.Beuse = N(P1.Buse (:,2) ,:);
P1.cuse = [P1.Aluse (:,2) ’; P1.Beuse (:,2)’];
P1.ruse = [P1.Aluse (:,1) ’; P1.Beuse (:,1)’];

% Set colormap
bin = 16;
P1.range = [-8,8];
P1.map = brewermap(bin ,’*RdBu’);
P1.scale = P1.B;
P1.scale(P1.B > P1.range (2)) = P1.range (2);
P1.scale(P1.B < P1.range (1)) = P1.range (1);
P1.colorInd = floor((bin -1) *(.5 + P1.scale ./ (P1.range (2)-P1.range (1))))+1;
P1.colorVal = P1.map(P1.colorInd ,:);
plotspace(P1);

% Solve minimum weight considering feasibility/cost LP
[z2 ,J2val] = linprog(J2,A,b,Aeq ,beq);

% Save the beam forces
f2 = z2(1:m);
f2_avmag = mean(abs(f2(f2~=0)));

% Create struct with all necessary plotting information
P2.n = n;
P2.file = ’optTruss2.eps’;
P2.filter = abs(z2) > 1e-3;
P2.zLog = P2.filter (1:m);
P2.L = L(P2.zLog);
P2.Lsum = sum(P2.L);
P2.B = z2(P2.zLog);
P2.Buse = AlBe(P2.zLog ,:);
P2.Bnum = size(P2.Buse ,1);
P2.Aluse = N(P2.Buse (:,1) ,:);
P2.Beuse = N(P2.Buse (:,2) ,:);
P2.cuse = [P2.Aluse (:,2) ’; P2.Beuse (:,2)’];
P2.ruse = [P2.Aluse (:,1) ’; P2.Beuse (:,1)’];

% Set colormap
bin =60;
P2.range = [-4,4];
P2.map = brewermap(bin ,’*RdBu’);
P2.scale = P2.B;
P2.scale(P2.B > P2.range (2)) = P2.range (2);
P2.scale(P2.B < P2.range (1)) = P2.range (1);
P2.colorInd = floor((bin -1) *(.5 + P2.scale ./ (P2.range (2)-P2.range (1))))+1;
P2.colorVal = P2.map(P2.colorInd ,:);
plotspace(P2);

17

A.2 Plotting Function

function handles = plotspace(P)
%PLOTSPACE - Plot design space for optimal truss topology problem

f_loc = [20 ,6];
sleft_loc = [1 5; 1 6; 1 7];
nsleft = size(sleft_loc ,1);
supX = repmat ([1 0 0 1],nsleft ,1);
supY = repmat ([0 .3 -.5 0],nsleft ,1) + sleft_loc (:,2);
groundX = fliplr ([-.5 0] + zeros (3*nsleft ,1));
groundY = [-.3 0] + (repmat ([-.1,.2,.5]’,nsleft ,1) + repelem(sleft_loc (:,2) ,3));
forceX = [-.03,.03,.03 ,.35,0, -.35,-.03] + f_loc (1);
forceY = [0 ,0 ,3.75 ,3.5 ,4.25 ,3.5 ,3.75] + f_loc (2);

fig = figure(’Name’,’Optimal Truss Problem ’);
set(fig ,’Position ’ ,[2 ,200 ,1075 ,510])%910
ax = axes(’Parent ’,fig ,’xlim’ ,[-1.25,21],’ylim’ ,[0 12],’yDir’,’reverse ’ ,...

’DataAspectRatio ’ ,[1 1 1],’Color’ ,[.99 .99 .99],’FontName ’,’Monospaced ’ ,...
’FontWeight ’,’Bold’,’FontSize ’ ,13.5,’LineWidth ’ ,1);

box(ax,’on’); hold(ax,’on’);
[X,Y] = meshgrid (1:20 ,1:11);
X = reshape(X,220 ,1); Y = reshape(Y,220 ,1);
s = scatter(ax ,X,Y,8,’k’,’filled ’);

s.DataTipTemplate.DataTipRows (1,:).Label = ’\bf i’;
s.DataTipTemplate.DataTipRows (1,:).Value = ’YData’;
s.DataTipTemplate.DataTipRows (2,:).Label = ’\bf j’;
s.DataTipTemplate.DataTipRows (2,:).Value = ’XData’;
s.DataTipTemplate.DataTipRows(end +1) = dataTipTextRow(’\bf N’ ,1:P.n);

xticks(ax ,1:4:21);
yticks(ax ,1:2:11);
patch(’Parent ’,ax ,’xData’,forceX ,’yData’,forceY ,’EdgeColor ’,’#EDB120 ’ ,...

’FaceColor ’,’#EDB120 ’,’LineWidth ’,1,’PickableParts ’,’None’);
s2 = scatter(ax ,20,6,8,’k’,’filled ’);

s2.DataTipTemplate.DataTipRows (1,:).Label = ’\bf i’;
s2.DataTipTemplate.DataTipRows (1,:).Value = ’YData ’;
s2.DataTipTemplate.DataTipRows (2,:).Label = ’\bf j’;
s2.DataTipTemplate.DataTipRows (2,:).Value = ’XData ’;
s2.DataTipTemplate.DataTipRows(end+1) = dataTipTextRow(’\bf N’ ,215);

patch(’Parent ’,ax ,’xData’,supX ’,’yData ’,supY ’,’LineWidth ’ ,.9,...
’EdgeColor ’,’black’,’FaceColor ’,’None’,’PickableParts ’,’None’);

plot(ax,groundX ’,groundY ’,...
’k’,’LineWidth ’,.9,’HandleVisibility ’,’Off’,’PickableParts ’,’None’);

18

if exist(’P’,’var’)
% Plot beams
% Beams color is tied to the force in the beam , beams in tension
% are red , while beams in compression are blue. The darker the
% color , the larger the magnitude of the force in the beam.
for ii = 1:P.Bnum

plot(ax,P.cuse(:,ii),P.ruse(:,ii),’k’ ,...
’LineWidth ’ ,4.75,’HandleVisibility ’,’Off’,’PickableParts ’,’None’)

plot(ax,P.cuse(:,ii),P.ruse(:,ii),’Color ’,P.colorVal(ii ,:) ,...
’LineWidth ’ ,3.75,’HandleVisibility ’,’Off’,’PickableParts ’,’None’);

end

scatter(ax ,20,6,100,’MarkerEdgeColor ’,’#EDB120 ’ ,...
’MarkerFaceColor ’,’#EDB120 ’,’PickableParts ’,’None’);

% Re-plot nodes used in the truss
% We want to see these nodes , but the other nodes are not
% necessary , so it is ok if unused nodes are covered by the beams
unique_nodes = unique ([P.Aluse;P.Beuse],’rows’);
s3 = scatter(ax,unique_nodes (:,2),unique_nodes (:,1) ,30,’filled ’ ,...

’LineWidth ’,1,’MarkerEdgeColor ’,’k’,’MarkerFaceColor ’,’w’);
s3.DataTipTemplate.DataTipRows (1,:).Label = ’\bf i’;
s3.DataTipTemplate.DataTipRows (1,:).Value = ’YData ’;
s3.DataTipTemplate.DataTipRows (2,:).Label = ’\bf j’;
s3.DataTipTemplate.DataTipRows (2,:).Value = ’XData ’;
s3.DataTipTemplate.DataTipRows(end+1) = dataTipTextRow(’\bf N’ ,...

sub2ind ([11 ,20], unique_nodes (:,1),unique_nodes (:,2)));
end

colormap(ax,P.map);
colorbar(ax,’Ticks’,[P.range (1) .5*P.range (1) 0 .5*P.range (2) P.range (2)],...

’TickLabels ’,{sprintf(’\\leq%i’,P.range (1)),string (.5*P.range (1)),’0’ ,...
string (.5*P.range (2)),sprintf(’\\geq %i’,P.range (2))});

ax.CLim = P.range;
hold(ax,’off’);

exportgraphics(fig ,P.file);
handles = [fig , ax];
end

A.3 Upper Triangular 2D to Linear 1D Index Transformation Function

function out = H_ut(in1 ,in2)

if exist(’in2’,’var’)
u = in1;
v = in2;
if u(:) >= v(:)

error(’First index must be less than second index’);
end
w = .5 .* (v-1) .* (v-2) + u;
out = w;

else
w = in1;
v = ceil (.5 * (1 + sqrt (8*w + 1)));
u = w - .5 .* (v-1) .* (v-2);
out = [u;v]’;

end
end

19

B Tension-Compression Truss Plots

1 5 9 13 17 21

1

3

5

7

9

11

(a) Categorical visualization of LP 1○ solution

1 5 9 13 17 21

1

3

5

7

9

11

(b) Categorical visualization of LP 2○ solution

Figure 5: Visualization of the solutions to our LP problems. Beam color represents the categorical
classification of each beam. Orange beams are in tension while blue beams are in compression.

20

	Introduction
	Problem Definition
	Formulation
	Efficient Beam Representation
	General Form for Linear Programming
	Building Tables of Known Constants
	Beam Length
	Angle Between Nodes

	A Smaller Problem in General Form
	"Hold the Load" Constraint
	"Don't Break" Constraint
	Minimization Function
	Unifying the Sub-Problems

	Expanding to an Arbitrarily Sized Design Grid

	Solution
	Conclusion
	References
	Matlab Code
	
	Plotting Function
	Upper Triangular 2D to Linear 1D Index Transformation Function

	Tension-Compression Truss Plots

