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Abstract

Public benchmarks are compromised, as the
training data for many Large Language Models
(LLMs) is contaminated with test data, suggest-
ing a performance gap between benchmark scores
and actual capabilities. Ideally, a private holdout
set could be used to accurately verify scores. Un-
fortunately, such datasets do not exist for most
benchmarks, and post-hoc construction of suffi-
ciently similar datasets is non-trivial. To address
these issues, we introduce a systematic methodol-
ogy for (i) retrospectively constructing a holdout
dataset for a target dataset, (ii) demonstrating the
sufficient indistinguishability of this retro-holdout
dataset, and (iii) comparing LLMs on the two
datasets to quantify the performance gap due to
the dataset’s public availability. Applying these
methods to TruthfulQA, we construct and release
Retro-TruthfulQA, on which we evaluate twenty
LLMs and find that some have inflated scores
by more than 10 percentage points. Our results
demonstrate that public benchmark scores do not
accurately assess model properties, and under-
score the importance of improved data and evalu-
ation practices in the field.

“
“The enemy of truth is blind acceptance.”

–Anonymous
Lin et al., 2022 ”

1. Introduction
Concerns have emerged about the reliability of public bench-
marks to accurately assess the performance of large lan-
guage models (Alzahrani et al., 2024; Zheng et al., 2024;
Fourrier et al., 2023). First, there is a notable discrepancy
between reported performance of models on evaluation
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datasets and their actual capabilities in practical settings
(Li et al., 2024). Second, achieving high scores on evalua-
tions is strongly incentivized, as higher scores are closely
linked to increased publicity and wider adoption of the given
model (HuggingFaceH4). Emphasis on benchmarks fosters
a competitive environment where optimizing for benchmark
performance can take precedence over real-world perfor-
mance, potentially compromising the practical effectiveness
or safety of models. This situation resembles specification
gaming, where models meet the requirement of scoring well
on metrics without genuinely improving on the capabili-
ties that these measurement aim to assess (Krakovna et al.,
2020). In a similar fashion, we refer to the direct and in-
direct mechanisms that lead to a systematic gap between
benchmark scores and real-world performance as evaluation
gaming.

Recent research has shown that evaluation datasets have,
in some cases, been included in training data (Sainz et al.;
Oren et al., 2023; Schaeffer, 2023; Shi et al., 2023; Jiang
et al., 2024; SLAM-group), demonstrating that evaluation
gaming is occurring. Such data leakage can undermine the
predictive power of benchmarks, leading to significant per-
formance gaps between a model’s evaluation scores and
its actual performance, as well as erode trust in reported
model scores (Park, 2024), highlighting the need to improve
practices for both dataset release, and data collection. These
issues are particularly problematic given the significant role
that evaluations are likely to play in the governance of ma-
chine learning systems, as stronger economic incentives will
only increase the likelihood and severity of evaluation gam-
ing. To accurately gauge the affects of evaluation gaming
for some specific task, e.g. data contamination, we need
access to a dataset originating from the same data distribu-
tion as the target evaluation which has not been available
for model development, training, or validation.

This is the idea of holdout datasets, which are used to as-
sess a machine learning model’s unbiased performance af-
ter training. By definition, a holdout dataset comes from
the same distribution as its corresponding target dataset,
meaning that any evaluation conducted on both datasets
should have the same result within some statistical margin
(James et al., 2023). The second key characteristic of hold-
out datasets is that they are kept hidden during the training
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Figure 1. Visualization of our methodology. The left panel summarizes the process for constructing a retro-holdout dataset, while the right
panel illustrates how to leverage such a dataset to quantify benchmark inflation.

process. When taken in combination, these properties con-
stitute that comparing a model’s performance on a public
benchmark and a corresponding holdout dataset could reveal
whether the public benchmark has influenced the training
process. Unfortunately, holdout datasets for benchmarks are
typically not available.

To resolve this, we propose retroactive holdout, or retro-
holdout, datasets, which are verified to be similar to their
corresponding target dataset through various tests, despite
being created independently and retroactively. Utilizing a
retro-holdout, one can explicitly quantify the evaluation per-
formance gap of any given model. We detail our methodol-
ogy for creating and validating retro-holdout datasets, along
with multiple recommendations and tools for generating
such datasets. A demonstrative case study is then conducted
with the TruthfulQA evaluation (Lin et al., 2022) to quantify
performance gaps for twenty contemporary models.

In the full work, we:

• Develop a robust and novel process for the construc-
tion of retro-holdout datasets which are statistically
indistinguishable from the target datasets.

• Introduce four tests for determining the similarity be-
tween two evaluation datasets, enabling identification
of appropriate retro-holdout datasets.

• Release Retro-TruthfulQA – a retro-holdout dataset
for TruthfulQA, which can be used to quantify the
performance gaps of a model on the original dataset.1

1Retro-TruthfulQA is only accurate on models with a training
cutoff date prior to January 1st, 2024.

• Evaluate twenty models using Retro-TruthfulQA to
demonstrate measurable score inflation.

2. Methods
Unlike conventional holdout sets, retro-holdout datasets
are not randomly selected subsets; they are independently
created post-hoc to match the properties of the target
dataset, thereby ensuring that they serve as effective and
unbiased benchmarks for assessing real-world performance
of the model post-training. For brevity, we define

TARGET := an arbitrary, publicly available benchmark,
RETRO := a retro-holdout dataset for TARGET.

We assume that the entries in TARGET were drawn from
a parent distribution, which we denote as PARENT. We
propose that, utilizing TARGET, along with information
regarding its creation, a retro-holdout dataset, RETRO, which
could have been drawn from PARENT, but is distinct from
TARGET, can be created.

2.1. Creating the RETRO

The methodology for crafting RETRO– while dependent on
the specific TARGET – generally follows two overarching
phases: Build Intuition and Entry Formulation. Both of
these phases are crucial for understanding the nature of
TARGET and generating entries that are representative of
PARENT yet distinct from TARGET. These will be expanded
on further in the full paper.
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2.2. Sufficient Indistinguishability

Establishing with absolute certainty that the two datasets
originated from the same distribution is impossible.
However, if a RETRO could have indeed been drawn from
(PARENT − TARGET), then it should be challenging for
statistical tests to distinguish between TARGET and RETRO.
We therefore resort to multiple statistical tests designed
to robustly test the null hypothesis that TARGET and
RETRO have a common origin. If the result of each test
indicates that this hypothesis cannot be rejected, we
designate our RETRO to be sufficiently indistinguishable
from TARGET. While it is theoretically possible to construct
an infinite array of tests to evaluate the similarity between
the two datasets, practical considerations guide us to focus
on four key tests that provide a thorough assessment:

• Similarity of Difficulty: Are the questions in both
datasets comparably challenging?

• Semantic Embedding Similarity: What is the
likelihood that a distribution of cosine similarities
between sentence embeddings similar to that of
RETRO have been pulled from PARENT?

• Prediction Accuracy: Can a model, fine-tuned on
randomized splits of the datasets, differentiate between
elements from TARGET and RETRO?

• Human Distinguishability: Can humans identify a
RETRO sample hidden in two TARGET samples?

We assert that the two datasets are sufficiently indistinguish-
able if they pass all four tests.

Similarity of Difficulty Assessing whether the retro-
holdout dataset, RETRO, matches the difficulty of the target
dataset, TARGET, is crucial for drawing meaningful conclu-
sions about evaluation gaming; as otherwise performance
differences could be attributed to the varying levels of diffi-
culty, rather than a models’ true capabilities. To understand
this potential disagreement between datasets, we consider
models with a training cutoff date prior to the release of the
TARGET, or pre-release models. Since pre-release models
could not possibly have been affected by exposure to TAR-
GET, their performance on both TARGET and RETRO should
agree within a margin of statistical uncertainty – defined
as 95% confidence bands using Fisher’s Exact Test. See
Appendix C for further documentation on our evaluation
methodology.

It is worth mentioning that, provided we had access to many
LLMs with a wide range of capability levels, we believe
that this test, in conjunction with simple human assess-
ment, would be enough to conclude that any difference in
performance must be due to evaluation gaming. However,
machine learning has progress rapidly and such older pre-
release models now significantly underperform their modern
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Figure 2. Model accuracy on the misconceptions category of
Retro-TruthfulQA vs. TruthfulQA for multiple pre-release models.
For two datasets to pass the Similarity of Difficulty test, no points
should lie outside the 95% confidence band, showing that models
which could not have been influenced by TruthfulQA perform
similarly on both datasets.

counterparts. Not only that, some of these models, such as
davinci-001, may no longer even be publicly available.

To address this limitation, we use a number of techniques to
amplify model performance, thereby seeking to assess the
whole range of difficulties even with less performant older
models. Our methods include: allowing the model to choose
multiple answers (top-k), including examples of other ques-
tions within the dataset (5-shot), including a routine prompt
which aims to elicit intermediary outputs from the model
(chain-of-thought), and using what the TruthfulQA paper
called a helpful prompt (Lin et al., 2022).

Prediction Accuracy We adopt a modification of predic-
tion accuracy as described by Dankar & Ibrahim (2021) to
train a model that classifies an entry as either belonging to
TARGET or to RETRO, using balanced classes. Contrary to
the conventional use of logistic regression in synthetic data
evaluations (Dankar & Ibrahim, 2021), we fine-tune BERT
(Devlin et al., 2019) on the prediction task. This choice
is predicated on BERT’s capabilities in capturing nuanced
semantic relationships within text, which are crucial for
accurately assessing the subtle distinctions or similarities
between dataset entries.

Semantic Embedding Similarity We conduct a random
permutation test to determine the likelihood that a distribu-
tion with similar properties to RETRO could be randomly
drawn from PARENT (Fisher, 1974; normaldeviate, 2012;
Hemerik, 2024). For the test statistic used in our random
permutation test, we compute the mean of all pairwise co-
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sine similarities between sentence embeddings of a given set
(Reimers & Gurevych, 2019). This test statistic is calculated
for N random same-size splits of the union of TARGET and
RETRO. The values for TARGET and RETRO are then com-
pared with those from our N random samples, to yield one
p-value for TARGET, and one for RETRO. To successfully
pass this test,

p-valueTARGET, p-valueRETRO ∈ [0.05, 0.95].

See Appendix E for further details.

Human Indistinguishability To assess whether the
datasets were distinguishable to humans, we conducted a
survey where participants were tasked to separate entries
from TARGET and RETRO. Initially, participants were ori-
ented with ten labeled entries from each dataset to provide
them with contextual understanding. They then undergo
a series of ten tests, each comprising of three dataset en-
tries – two from TARGET and one from RETRO. All entries
are drawn without replacement to ensure unique samples
throughout the survey. Additionally, we implement a varia-
tion of this test using GPT-4o as the evaluator to compare
human and model performance. See Appendix G for com-
prehensive details on the survey methodology, including
specifics on participant recruitment, the structure of the test,
and survey instructions.

3. Results and Discussion
To test our process, we first applied it to the largest cate-
gory of the TruthfulQA dataset – Misconceptions. Notably,
Retro-TruthfulQA (Misconceptions) passed all four of our
indistinguishability tests, making it the first retro-holdout
dataset to be sufficiently indistinguishable from its corre-
sponding target dataset. The results of these tests can are
available in Appendix B.

With our newly created retro-holdout dataset, we explicitly
quantify the performance gap of 20 models, which can be
seen in Figure 4. Our analysis primarily focuses on popular
frontier API models, such as Claude3 and GPT-4, as well
as several Open Release models that were speculated, or
proven, to have data leakage (Sainz et al.).

4. Conclusion
Our investigation demonstrate significant discrepancies be-
tween benchmark performances and real-world capabilities
of LLMs, underscoring the need for robust, and reliable
evaluation processes. We introduce a novel, systematic
methodology for constructing retro-holdout datasets, and
conduct a case study of the process using the largest cat-
egory of TruthfulQA. This methodology, designed to be
generally applicable across various public benchmark evalu-
ations, provides tools that significantly enhance the accuracy

0.50 0.75 1.00
Accuracy on TruthfulQA

0.50

0.75

1.00

Ac
cu
ra
cy
 o
n 
Re
tro
-Tr
ut
hf
ul
QA

Google
OpenAI
JanHQ
Microsoft
01.ai

Llama
Mistral
Xwin
Claude

95% Confidence Band

Figure 3. Model performance gaps on TruthfulQA vs our retro-
holdout. Models falling below the diagonal perform worse on
Retro-TruthfulQA than on the original dataset. Even with conser-
vative confidence bands and strict criteria requiring similarity of
the retro-holdout, we see that evaluation gaming is occurring in
both Open Release and Closed Source models. For an additional
visualization of these data, see Figure 4 in Appendix A.

and reliability of model evaluations, offering a practical path
forward for the field. In a recent work Anwar et al. (2024)
explicitly challenge “How can the evaluations of LLMs be
made trustworthy given the difficulty of assuring that there
is no test-set contamination?” Our work provides a succinct
and powerful response: Retro-Holdouts.
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Appendices
A. Inflation Gaps
For the misconceptions category, several models were found to underperform compared to the public benchmark. This
notably includes both API and Open Release models.
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Figure 4. Model performance gaps on TruthfulQA’s Misconceptions category, quantified by the difference in a model’s benchmark score
on TruthfulQA (Misconceptions, Non-adversarial), and Retro-TruthfulQA (Misconceptions, Non-adversarial).

B. Indistinguishability Test Results

Table 1. Retro-TruthfulQA Indistinguishability Tests Results for Misconceptions.

Description H0 Outcome Test p-value

babbage-002 difficulty gap 0% −1.2± 7.4% ≥ 50%
davinci-002 difficulty gap 0% −3.3± 8.0% ≥ 50%

Prediction accuracy 50% 53.7± 3.26% 47.4%

TARGET Random permutation 50% – 6.67± 1.86%
RETRO Random permutation 50% – 93.48± 1.85%

GPT-4o Distinguishability 33.3% 28.0± 9.0% ≥ 50%
Human Distinguishability 33.3% 31.3± 7.1% ≥ 50%
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C. Evaluation Details
Experiments were done through the OpenAI chat completion API as well by running various models from Huggingface with
mostly default settings. Aside from generation length, we specified a temperature of 0.5, although it may be that OpenAI
chat models do not use this parameter.

C.1. Adversarial and Non-Adversarial Subsets

The TruthfulQA dataset contains two categorizations for entries: Category and Type. Our experiments have focused on
the largest of these categories – misconceptions. The Type for the dataset is either adversarial or non-adversarial. Our
evaluation finds that GPT-3 models like babbage-002 and davinci-002 do significantly better on the non-adversarial portion.

This is unsurprising, as the adversarial set was constructed by testing various entries on a version of GPT-3 and discarding
those the model answered correctly. These entries were then used as inspiration to create the remaining portion, but where
no such model filtering was done. Due to this potential filtering bias and the performance difference between the two sets,
we have additionally chosen to focus on the non-adversarial portion of TruthfulQA. While these changes are deviations from
the original TruthfulQA evaluation, it is worth noting that all experiment compare the performance of this same evaluation
method on the original vs the retro-holdout dataset, along with calibration such that any statistically-significant gap between
these must be explained by some form of evaluation gaming.

C.2. MC1′

During the construction of TruthfulQA (Lin et al., 2022), the authors envisioned that language models would be evaluated
by the max-probability assigned to any of a predefined list of available options. This approach may suffer from three issues.
First, this may penalize long answer options which naturally have lower total probability. Second, such an answer may not
well reflect which of a fixed number of options is the most likely to be generated, seeing how this may be more determined
by the first tokens of the option. Finally, access to these logged probabilities is not a guarantee – typical API access no
longer provides probability output, making such assessment substantially more difficult for Open Release models, and
impossible for Closed Source ones.

For these reasons, we decided to evaluate models by providing an enumerated list of all TruthfulQA mc1-choices and
generating tokens to select a preferred option, which corresponds with the methodology used for the HuggingFace Open
LLM Leaderboard through EleutherAI’s LM Evaluation Harness (HuggingFaceH4; Gao et al., 2023).

C.3. Sampling

Since our experiments rely on generation rather than sequence probabilities, there is some randomness in answers. To
address this, responses were resampled a minimum of ten times, and until one option had been selected three times more
than all other alternatives. With each sample, the order of available options were shifted one step, with the initial ordering
being alphabetical. If no option meets this criteria after one hundred attempts, the model’s response is marked as incorrect.

When a model fails to generate one of the options (up to normalization such as dropping white spaces), we fall back to
providing options in a numbered respectively alphabetical list where choosing these identifiers is also accepted.

Especially when working with pre-release models, it can be difficult to guarantee model outputs conform to specific formats,
such as multiple choice responses. For this reason, substantial efforts were made to reduce fluctuations reported evaluation
results. Due to prohibitive costs for many resamples, we were only able to calculate empirical one sigma error bars for the
pre-release models on both TruthfulQA and Retro-TruthfulQA. On TruthfulQA, babbage-002, davinci-002, and
neox-20b had had statistical error of ±1.27%, ±0.83%, and ±2.84% respectively, while their errors on Retro-TruthfulQA
were ±2.47%, ±1.96%, and ±1.34%.
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C.4. Evaluation Prompt (Misconceptions)

For all models, the following Vicuna-inspired prompt was used, along with modifications for few-shot, chain-of-thought.
Alternatively, the “helpful prompt” from (Lin et al., 2022) was used.

{few_shot_examples}
USER: This is a multiple-choice question. Answer it by repeating one of the
options, exactly and literally.
{question}
Available options:
{option_1}
{option_2}
..
{option_k}
Answer with one of the options.
{cot_prompt}
ASSISTANT:

C.5. Compute

Due the nature of evaluating a variety of models, different experiments relied on different architecture. The simplest of these
being API models through OpenAI and Anthropic, which require no local resources. Other models were primarily hosted by
Hugging Face. The largest of these reported open-release models were run using 4xT4 GPUs and the smallest could run
on CPU only. The total compute budget with all intermediate experiments has been less than $1000. Evaluating a single
model has cost between $1 and $50. Approximately 200 such experiments have been used to generate all the values and
performance gaps seen in this paper.

D. RETRO Iteration
Our stringent standard for required similarity render it improbable that the initial RETRO tested will be statistically
indistinguishable. Acknowledging this, and considering the time-intensive nature of dataset generation, efficiency is all the
more important. To this end, we recommend that an initial small-scale application of our process be conducted, allowing
for developers to use our indistinguishability tests to gain insights about their TARGET. This preliminary phase allows
developers to refine their methods and heuristics before re-conducting the process to create a more extensive retro-holdout
dataset.

This process was used for the construction of Retro-TruthfulQA. As anticipated, the first iteration did not meet our exacting
standards of calibration. However, by working with the various tests on our smaller dataset, we identified several failure
modes that were not initially apparent. These instances of failure, and the corresponding adjustments made, provided critical
learning opportunities that guided the subsequent refinements.

E. Semantic Embeddings
We use an embedding model, specifically all-mpnet-base-v2, through the HuggingFace Sentence Transformers
library, to create vector representations of each entry (Reimers & Gurevych, 2019). We define an entry as a question
from the dataset terminated with “?/n” followed by all multiple choice answers to the question, ordered alphabetically.
Each multiple choice answer is separated with “/n”. The resulting vectors are referred to as embeddings. Similarity was
computed with cosine similarity and not dot product.
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F. Iterative Tools
Creating a RETRO that meets our rigorous standards for sufficient indistinguishability (see §2.2) is non-trivial and will
typically only be achieved in an iterative manner. To aid in this process, we have devised a suite of tools that analyze and
illustrate the various ways in which two datasets can be distinct.

• Fine-Tuned Prediction Model Attention: A BERT model (Devlin et al., 2019) is fine-tuned to classify entries as
belonging to either TARGET or RETRO. Transformers Interpret, a library based on integrated gradients for explaining
model output attribution (Sundararajan et al., 2017) is then leveraged to identify which input tokens the model
considered most relevant when differentiating between TARGET and RETRO.

• Datapoint Embeddings: Embedding vector representations of each datapoint, as described in Appendix E, are used as
the basis for the following three tools; when analyzed in conjunction they can provide meaningful insights on general
similarity trends, outlier detection, and topic clustering.

– Embedding Space Visualization: We employ Uniform Manifold Approximation and Projection (UMAP) to
project these embedding vectors onto a two-dimensional plane (McInnes et al., 2018). The visualization provides
an intuitive understanding of the dataset’s structure and distribution. An example output of this visualization tool
is provided in Figure 5a.

– Internal Cosine Similarity Distribution: To assess similarity between entries within the datasets we plot
histograms of pairwise cosine similarities of datapoint embeddings. This representation aids in identifying outliers
and assessing overall similarity within the datasets, as demonstrated in Figure 5b.

– Largest Internal Cosine Similarity Comparison: We highlight the ten entry pairs with the highest cosine
similarities in both datasets, providing a direct comparison of the most similar entries and their respective values.
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Figure 5. Example outputs from the (a) Embedding Space Visualization, (b) Internal Cosine Similarity Comparison.
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G. Human Indistinguishability
Perhaps the most general way to measure the difference between two datasets is to evaluate whether human observers
are able to identify any distinctions. Therefore, we recruited a number of annotators via the crowd-sourcing platform
Prolific.com. These annotators received specific instructions and were compensated at a rate corresponding to at least the
U.S. minimum wage. To guarantee that the participants engaged with the task seriously, three attentiveness questions were
included in the evaluation process.

G.1. Human Annotation Test: Description

An annotator is provided the following written instructions:

Instructions

This form assesses to what extent humans are able to distinguish two datasets.

You will be presented with a number of tests. Each test will consist of a number of questions including their answers.
One of these questions comes from a different dataset than the others.

Your task is to identify which question comes from a different dataset than the others.

You will be shown a number of examples from the two datasets to give you an opportunity to identify high-level
patterns.

Please do not look up these datasets nor google the answers - use your own best judgement.

Note that we use the word test to describe the task of selecting which of the three is believed to be a member of the second
dataset (RETRO) in order to avoid confusion with the term question, which is frequently used to describe entries within the
datasets.

Following this set of instructions, the annotator is provided with ten (10) random entries from the TARGET and another ten
(10) random entries from the RETRO; all twenty (20) entries are drawn without replacement and labeled correctly. This is to
allow the annotator to identify high level patterns and build an understanding of the two different sets. Once the annotator
has reviewed these examples, they are presented with a series of ten tests.

If the RETRO is sufficiently indistinguishable from the TARGET, then human performance on this annotation test should not
be statistically different from random selection. For our results, a total of twenty three (23) approved participants answered
a total of 230 tests.
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H. Related Work
Development of large language models (LLMs) continues to outpace the advancement of evaluation methods, raising
concern about benchmark integrity (Chang et al., 2024). Evaluation datasets are frequently used during an LLM’s training
process, causing inflated benchmark scores; no standard methodology exists to detect this issue (Alzahrani et al., 2024).
Data quality, essential for model performance, remains undervalued and under-incentivized (Sambasivan et al., 2021). Data
contamination, where test data is included in training sets, results in models ”cheating” by memorizing tests rather than
generalizing (Marie, 2023). High benchmark scores are heavily incentivized, promoting practices that compromise data
quality and evaluation integrity.

Recent work has introduced heuristics for third-party contamination tests. Sainz et al. (2023) propose a technique to detect
test set contamination by eliciting reproduction of specific test set examples. Golchin & Surdeanu (2023) suggest a method
for identifying contamination in black-box models by comparing the similarity between model completions of randomly
selected example prefixes and the actual data using GPT-4. Concurrent work by Zhang et al. (2024) is notable for its use of a
holdout set, a concept central to our approach, and shows accuracy drops of up to 13% and highlights a positive correlation
between memorization and performance gaps.

It is well known that metrics lose their predictive power when incentives are attached to them (Goodhart, 1984; Strathern,
1997; Karwowski et al., 2023). As Thomas & Uminsky (2020) state, ”overemphasizing metrics leads to manipulation,
gaming, a myopic focus on short-term goals, and other unexpected negative consequences.” Current AI risk metrics fail
to address emerging failure modes (Khlaaf, 2023), and (Bengio, 2024) emphasize that high benchmark scores do not
necessarily equate to effective real world performance.

Empirical findings highlight the necessity for immediate structural reforms in AI research and development to prioritize
and encourage data quality (Sambasivan et al., 2021). Recent calls for a science of evaluations underscore the urgent need
for rigorous evaluation frameworks to inform policy and ensure responsible AI development (Bommasani et al., 2023;
Research).

H.1. Contemporaneous Work

Coinciding with our efforts, Zhang et al. (2024) introduce the GSM1k dataset for assessing mathematical reasoning. This
study employs several human tests to ensure an “apples-to-apples” similarity to their target dataset GSM8k (Zhang et al.,
2024; Cobbe et al., 2021). Similar to our findings, Zhang et al. (2024) report an overperformance by many models on their
target evaluations.

While the GSM1k dataset comprises over 1000 entries, only 50 have been publicly released to date. Zhang et al. (2024)
recognize that releasing the entire dataset will likely result in the same data leakage current benchmark suffer from. They
have decided to postpone the full release of GSM1k until either (i) the top open source models score over 95% on the
benchmark, or (ii) the end of 2025.

Given the similarity between our works, we thought it would be a good opportunity to put our concept of sufficient
indistinguishability to the test. We took the 50 published questions from their dataset, henceforth referred to as GSM1k50,
and examined them using the same methods as we did for Retro-TruthfulQA. Our semantics tools and Semantic Embedding
Similarity test suggest that GSM1k50 can be adjusted to more closely resemble original GSM8k entries, generating a
TARGET and RETRO random permutation p-values of 3.02±0.05% and 98.7±0.02%, respectively. The Prediction Accuracy
test reveals that GSM1k50 can be differentiated from the original GSM8k, albeit to a small, but statistically significant
extent. These finding highlights the rigor of our notion of sufficient indistinguishability.

Despite the independent development and differing methodologies of our projects, both underscore the crucial role of
comprehensive dataset validation in enhancing the accuracy of model evaluations.
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